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Abstract—Many scientific datasets are of high dimension, and the analysis usually requires retaining the most important structures of

data. Principal curve is a widely used approach for this purpose. However, many existing methods work only for data with structures

that are mathematically formulated by curves, which is quite restrictive for real applications. A few methods can overcome the above

problem, but they either require complicated human-made rules for a specific task with lack of adaption flexibility to different tasks, or

cannot obtain explicit structures of data. To address these issues, we develop a novel principal graph and structure learning framework

that captures the local information of the underlying graph structure based on reversed graph embedding. As showcases, models that

can learn a spanning tree or a weighted undirected ‘1 graph are proposed, and a new learning algorithm is developed that learns a set

of principal points and a graph structure from data, simultaneously. The new algorithm is simple with guaranteed convergence. We then

extend the proposed framework to deal with large-scale data. Experimental results on various synthetic and six real world datasets

show that the proposed method compares favorably with baselines and can uncover the underlying structure correctly.

Index Terms—Principal curve, principal graph, structure learning

Ç

1 INTRODUCTION

IN many fields of science, one often encounters observa-
tions represented as high-dimensional vectors sampled

from unknown distributions. It is sometimes difficult to
directly analyze data in the original space, and is desirable
to perform data dimensionality reduction or associate data
with some structured objects for further exploratory analy-
sis. The problem of uncovering an underlying structure
from data has become more and more important in fields
ranging from computer vision to computational biology. In
this paper, we focus on principal graph and structure learn-
ing to uncover the underlying structure of data.

The classic approach for obtaining latent structure from
data is principal curve [1], which was initially proposed as a
nonlinear generalization of the first principal component
line. Informally, a principal curve is an infinitely differentia-
ble curve with a finite length that passes through the middle
of data. Several principal curve approaches have been pro-
posed by minimizing certain types of risk functions, includ-
ing the quantization error [1], [2], [3], [4], [5] and the
negative log-likelihood function [6], [7]. To overcome the

overfitting issue, regularization is required. K�egl et al. [2],
[8] bounded the total length of a principal curve, and
proved that the principal curve with a bounded length
always exists if the data distribution has a finite second
moment. Similar results were obtained by bounding the
turns of a principal curve [4]. The elastic maps and principal
graph approach [9], [10] took the elastic energy of a mem-
brane (and plate) to regularize the manifold learning prob-
lem. An alternative definition of a principal curve based on
a mixture model was considered in [1], where the model
parameters are learned through maximum likelihood esti-
mation and the regularization is achieved using the smooth-
ness of coordinate functions. Generative topographic
mapping (GTM) [7] was proposed to maximize the poste-
rior probability of the data which is generated by a low-
dimensional discrete grid mapped into the original space
and corrupted by additive Gaussian noise. GTM provides a
principled alternative to the self-organizing map [11] for
which it is impossible to define an optimality criterion [12].

Methods for learning a principal curve have been widely
studied, but they cannot handle self-intersecting data. As
stated in [13], the self-intersecting data structure (or principal
graph) is a collection of smooth curves where these curves
can intersect each other. A few methods can handle complex
principal objects. K�egl andKrzyzak [14] extended their polyg-
onal line method [2] for skeletonization of handwritten digits
and fingerprint minutiae [15], where sophisticated domain-
specific rules were required to generate the skeleton structure
[14]. If the sophisticated rules are not available for certain
tasks, thismethod is not directly applicable to these tasks. The
principal graph grammar approach [16] extends the classical
elastic maps and principal graph approach [10] to learn a
graph by using graph grammar [17], [18]. A set of predefined
graph grammar operations is applied to a given graph in all
possible ways; an elastic functional over each permissible

� Q. Mao is with the HERE Company, Chicago, IL 60606.
E-mail: qimao.here@gmail.com.

� L. Wang is with the Department of Mathematics, Statistics, and Computer
Science, University of Illinois at Chicago, Chicago, IL 60607.
E-mail: liwang8@uic.edu.

� I.W. Tsang is with the Centre for Artificial Intelligence, University of
Technology Sydney, Ultimo, NSW 2007, Australia.
E-mail: ivor.tsang@uts.edu.au.

� Y. Sun is with the Department of Microbiology and Immunology, The
State University of New York at Buffalo, Buffalo, NY 14228.
E-mail: yijunsun@buffalo.edu.

Manuscript received 4 Dec. 2015; revised 4 Oct. 2016; accepted 18 Nov. 2016.
Date of publication 4 Dec. 2016; date of current version 10 Oct. 2017.
Recommended for acceptance by G. Chechik.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2016.2635657

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 11, NOVEMBER 2017 2227

0162-8828� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



graph is minimized by the splitting algorithm; a transformed
graph with the largest energy descent is found over all per-
missible graphs. Simple grammarsworkedwell in some tasks
as demonstrated in [5], [19], and the splitting algorithm has
similar convergence guarantee as K-means. However, the
convergence of the principal graph grammar approach by
alternating between elastic graph construction and the split-
ting algorithm is not well established, and termination crite-
rion based on the number of transformations is quite
heuristic. In addition, the computation cost increases itera-
tively when the number of nodes in a graph increases. Simple
grammars can alleviate the computational issue [5], [19], but
they cannot form complicated principal objects, such as loops
and disconnected components. Topological data analysis [20]
is another related direction to extract simple graph represen-
tation of high dimensional datasets. An efficient algorithm
[21] was proposed to construct principal objects fromdatasets
represented by Reeb graphs [22], which were used to model
skeleton graphs, but it requires a proximity graph (�-neigh-
borhood or k-nearest neighborhood) as an input. Another
topological method called Mapper [23] was proposed to pro-
duce a multiresolution or multiscale image of the dataset by
building a simplicial complex, and was able to achieve sub-
stantial simplifications, as well as preserve certain topological
structures from the original dataset. It has been successfully
applied to 3D object recognition [23] and breast cancer tran-
scription data [24]. The topological structure constructed
varies significantly if there are a small number of noise sam-
ples since the connectivity could be formed whenever two
clusters have nonempty intersection. Additionally, a sub-
space constrained mean shift (SCMS) method [13], [25] was
proposed that can obtain principal points for any given sec-
ond-order differentiable density function, but it is still not
trivial to transform a set of principal points to an explicit struc-
ture. In many real applications, an explicit structure uncov-
ered from the given data is helpful for downstream analysis.
This critical point will be illustrated in Sections 2 and 6 in
detail with various realworld datasets.

Another line of research relevant to this work is structure
learning, which has had a great success in constructing or
learning explicit structures from data. The graph structures
that are commonly used in graph-based clustering and
semi-supervised learning are the k-nearest neighbor graph
and the �-neighborhood graph [26]. Dramatic influences of
these two graphs on clustering techniques have been stud-
ied in [27]. Since the �-neighborhood graph could result in
disconnected components or subgraphs in the dataset or
even isolated singleton vertices, the b-matching method is
applied to learn a better b-nearest neighbor graph via loopy
belief propagation [28]. However, it is improper to use a
fixed neighborhood size since the curvature of manifold
and the density of data points may be different in different
regions of the manifold [29]. In order to alleviate these
issues, a method for simultaneous clustering and embed-
ding of data lying in multiple manifolds [29] was proposed
using ‘2 norm over the errors that measure the linear repre-
sentation of every data point by using its neighborhood
information. Similarly, ‘1 graph was learned for image anal-
ysis using ‘1 norm over the errors for enhancing the robust-
ness of the learned graph [30]. Instead of learning directed
graphs by using the above two methods, an integrated

model for learning an undirected graph by imposing a spar-
sity penalty on a symmetric similarity matrix and a positive
semi-definite constraint on the Laplacian matrix was pro-
posed [31]. Most recently, probabilistic models [32], [33] for
dimensionality reduction are proposed to learn general
graphs in terms of kernels [34]. Although these methods
have demonstrated their effectiveness on various problems,
it is challenging to apply them to moderate-size data, let
alone large-scale data, due to the high computational com-
plexity. Moreover, they might yield suboptimal results by
heuristically transforming a directed graph to an undirected
graph for clustering and dimensionality reduction [29], [30].

This paper is an extension of our preliminary work [35],
where as a showcase we have demonstrated the effective-
ness of learning a minimum-cost spanning tree for datasets
of tree structures in certain applications. We move forward
to take into account more complicated structures that exist
in real world datasets as discussed in Section 2. Moreover,
we propose two strategies to specifically overcome the issue
of high complexity of the proposed method for large-scale
datasets. The main contributions of this paper are :

� We propose a novel regularized principal graph and
structure learning framework that addresses the
aforementioned limitations by learning a set of prin-
cipal points and an explicit graph structure from
data, simultaneously. Our work represents principal
objects using an explicit graph that is learned in a
systematic way with a guaranteed convergence, and
the learning is practical for large-scale data.

� Our novel formulation called reversed graph embed-
ding for the representation of a principal graph facil-
itates the learning of graph structures, generalizes
several existing methods, and possesses many
advantageous properties.

� In addition to spanning trees, a weighted undirected
‘1 graph is proposed for modeling various types of
graph structures, including curves, bifurcations, self-
intersections, loops, and multiple disconnected com-
ponents. This facilitates the proposed learning
framework for datasets with complicated graphs.

� We further propose two strategies to deal with large-
scale data. One is to use side-information as a priori
to reduce the complexity of graph learning, the other
is to learn a representative graph over a set of land-
marks. Both strategies can be simultaneously incor-
porated into our framework for efficient handling of
large-scale data.

� Extensive experiments are conducted for unveiling
the latent graph structures on a variety of datasets,
including various synthetic datasets and six real
world applications, consisting of various structures:
hierarchy of facial expression images, progression
path of breast cancer in microarray data, rotation cir-
cle of teapot images, smoothing skeleton of optical
characters, and similarity patterns of digits on two
large-scale handwritten digits databases.

The rest of the paper is organized as follows. We first illus-
trate the learning problem by using various real world data-
sets in Section 2. In Section 3, we present three key building
blocks for the representation of principal graphs and structure
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learning. Based on these key building blocks, we propose a
new regularized principal graph and structure learning
framework in Section 4. In Section 5, we incorporate two strat-
egies into the proposed framework to deal with large-scale
datasets. Extensive experiments are conducted in Section 6.
Finally, we conclude thiswork in Section 7.

2 MOTIVATION OF STRUCTURE LEARNING

In many fields of science, experimental data resides in a high-
dimensional space. However, the distance between two data
points may not directly reflect the distance measured on the
intrinsic structure of data. Hence, it is desirable to uncover the
intrinsic structure of data before conducting further analysis.

It has been demonstrated that many high-dimensional
datasets generated from real-world problems contain spe-
cial structures embedded in their intrinsic dimensional
spaces. One example is a collection of teapot images viewed
from different angles [36]. Each image contains 76� 101
RGB pixels, so the pixel space has a dimensionality of
23,028, but the intrinsic structure has only one degree of
freedom: the angle of rotation. As shown in Fig. 1a, distan-
ces computed by following an intrinsic circle are more
meaningful than distances computed in the original space.
Another example is given in [37] where it is demonstrated
that a collection of facial expression images (217� 308 RGB
pixels) contains a two-layer hierarchical structure (Fig. 3b in
[37]). The images from three facial expressions of one sub-
ject are grouped together to form the first layer, while all
images from the three subjects form the second layer. In
other words, images of one subject should be distant from
images of all other subjects, but images from three expres-
sions of the same subject should be close. More complicated
structures including loops, bifurcations, and multiple dis-
connected components as shown in Fig. 1b can be observed
in optical character templates for identifying a smoothing
skeleton of each character [13], [14]. Other examples with
specific intrinsic structures are also discussed in [38], [39].

We are particularly interested in studying human cancer,
a dynamic disease that develops over an extended time
period. Once initiated from a normal cell, the advance to
malignancy can to some extent be considered a Darwinian
process—a multistep evolutionary process—that responds
to selective pressure [40]. The disease progresses through a
series of clonal expansions that result in tumor persistence
and growth, and ultimately the ability to invade surround-
ing tissues and metastasize to distant organs. As shown in
Fig. 1c, the evolution trajectories inherent to cancer progres-
sion are complex and branching [40]. Due to the obvious

necessity for timely treatment, it is not typically feasible to
collect time series data to study human cancer progression
[28]. However, as massive molecular profile data from
excised tumor tissues (static samples) accumulates, it
becomes possible to design integrative computation analy-
ses that can approximate disease progression and provide
insights into the molecular mechanisms of cancer. We have
previously shown that it is indeed possible to derive evolu-
tionary trajectories from static molecular data, and that
breast cancer progression can be represented by a high-
dimensional manifold with multiple branches [41].

These concrete examples convince us that many datasets
in a high-dimensional space can be represented by certain
complicated structures in low dimension. Existing methods
exploit these structures of data implicitly either by learning a
parametric mapping function or approximating a manifold
via local geometric information of the observed data. How-
ever, these methods do not aim to directly learn an explicit
form of a structure in a low-dimensional space. In contrast,
our proposedmethod is designed for this purpose to express
the complicated structure of data by an explicit graph repre-
sentation, whichwill be discussed in the following sections.

3 PRINCIPAL GRAPH REPRESENTATION

Let X ¼ RD be the input space and X ¼ fx1; . . . ; xNg � X be
a set of observed data points. We consider learning a
projection function hG 2 H such that latent points Y ¼
fy1; . . . ; yKg � Y ¼ Rd in d-dimensional space can faithfully
represent X, where H ¼ fhG : Y ! Xg is a set of functions
defined on a graph G, and function hG maps yk to
hGðykÞ 2 X ; 8k ¼ 1; . . . ;K. Let G ¼ ðV; E;WÞ be a weighted

undirected graph, where V ¼ f1; . . . ;Kg is a set of vertices, E
is a set of edges, and W 2 RK�K is an edge weight matrix
with the ðk; k0Þth element denoted by wk;k0 as the weight of

edge ðk; k0Þ; 8k; k0. Suppose that every vertex k has a one-to-
one correspondence with latent point yk 2 Y, which resides

on a manifold with an intrinsic dimension d. Next, we intro-
duce three key components that form the building blocks of
the proposed framework.

3.1 Reversed Graph Embedding

The most important component of the proposed framework
is to model the relationship between graph G and latent
points Y. Given G, weight wk;k0 measures the similarity (or

connection indicator) between two latent points yk and yk0 in

an intrinsic space Y. Since the corresponding latent points
fy1; . . . ; yKg are generally unknown in advance, we coin a
new graph-based representation, namely Reversed Graph
Embedding, in order to bridge the connection between graph
structure G and corresponding data points in the input space.
Specifically, our intuition is that if any two latent variables yk
and yk0 are neighbors on Gwith high similarity wk;k0 , two cor-

responding points hGðykÞ and hGðyk0 Þ in the input space

should be close to one another. To capture this intuition, we
propose to minimize the following objective function as an
explicit representation of principal graphs, given by

VðY; hG;WÞ ¼
X

ðk;k0Þ2E
wk;k0 jjhGðykÞ � hGðyk0 Þjj

2
2; (1)

Fig. 1. Real world problems exhibiting a variety of graph structures. (a) 360
degree rotation of teapot images forming a circle. (b) Optical character
templates for different digits containing loops, bifurcations, and multiple
disconnected components. (c) Branching architecture of cancer evolution
(modified from [40]). Selective pressures allow some tumor clones to
expandwhile others become extinct or remain dormant.
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where hG 2 H and Y 2 Y are variables to be optimized for a
given G. At this moment, we cannot obtain interesting solu-
tions by directly solving problem (1) with respect to fY; hGg
due to multiple trivial solutions leading to zero objective
value. However, objective function (1) possesses many
interesting properties and can be used as a graph-based reg-
ularization for unveiling the intrinsic structure of the given
data, which is detailed below.

3.1.1 Relationship to Laplacian Eigenmap

The objective function (1) can be interpreted from a reverse
perspective of the well-known Laplacian eigenmap [26].
Denote Y ¼ ½y1; . . . ; yN � 2 Rd�N . The Laplacian eigenmap
solves the following optimization problem:

min
Y

XN
i¼1

XN
j¼1

vi;jjjyi � yjjj
2
2 : YDYT ¼ I;

where the similarity vi;j between xi and xj is computed in
the input space X in order to capture the locality informa-
tion of the manifold modeled by neighbors of the input data

points, e.g., vi;j ¼ expð� jjxi�xjjj22
2s2

Þ using the heat kernel with

bandwidth parameter s2 if i is the neighbor of j and j is also
the neighbor of i, and vi;j ¼ 0 otherwise, and D ¼ diag

ð½
PN

i¼1 vi;j�Þ 2 RN�N is a diagonal matrix. The Euclidean dis-
tance between yi and yj, i.e., jjyi � yjjj2, are computed in the

latent space Y. Consequently, two multiplication terms of
the objective functions of reverse graph embedding and
Laplacian eigenmap are calculated in a different space: (i)
weights wi;j and vi;j are computed in Y and X , respectively;

(ii) distances jjhGðykÞ � hGðyk0 Þjj2 and jjyi � yjjj
2
2 are com-

puted in X and Y, respectively.
Our formulation can directly model the intrinsic struc-

ture of data, while Laplacian eigenmap approximates the
intrinsic structure by using neighborhood information of
observed data points. In other words, our proposed
reversed graph embedding representation facilitates the
learning of a graph structure from data. The weight wk;k0

encodes the similarity or connectivity between vertices k
and k0 on G. For example, if wk;k0 ¼ 0, it means that edge

ðk; k0Þ is absent from E. In most cases, a dataset is given, but
graph G is unknown. In these cases, it is necessary to auto-
matically learn G from data. The objective function (1) is lin-
ear with respect to weight matrix W. This linearity property
facilitates the learning of the graph structure. We will dis-
cuss different representations of graphs based on this linear-
ity property in Section 3.3.

Another important difference is that the number of the
latent variables Y is not necessarily equal to the number of
input data points X, i.e., K � N . This is useful to obtain a
representative graph over a set of landmark points by com-
pressing a large amount of input data points, and the repre-
sentative graph can still faithfully represent the whole
dataset. We will explore this property for large-scale princi-
pal graph learning in Section 5.2.

3.1.2 Harmonic Function of a General Graph

We have discussed the properties of the reversed graph
embedding by treating variables yk and hG as a single

integrated variable hGðykÞ; 8k. Actually, the optimal function

hG 2 H obtained by solving (1) is related to harmonic or pluri-
harmonic functions. This can be further illustrated by the fol-
lowing observations. Let N k be the neighbors of point yk; 8k.
For any given yk, problem (1) can be rewritten as minhGðykÞP

k02N k
wk;k0 jjhGðykÞ � hGðyk0 Þjj

2, which has an analytic solu-

tion by fixing the rest of variables fhGðykÞgk 6¼k0 given by

hGðykÞ ¼
1P

k02N k
wk;k0

X
k02N k

wk;k0hGðyk0 Þ: (2)

If equality (2) holds for all k, function hG is a harmoinc func-
tion on G since its value in each nonterminal vertex is the
mean of the values in the closest neighbors of this vertex [5].
The plurihamonic graphs defined in [5] impose penalty
only on a subset of k-stars as,

���
���hGðymÞ �

1P
j2Nm

wm;j

X
j2Nm

wm;jhGðyjÞ
���
���
2

; (3)

where jNmj ¼ k; 8m. In contrast, our formulation (1) flexibly
incorporates any neighborhood structure existing in G. The
connection of hG to harmonic or pluriharmonic functions
enriches the target function, which has been previously dis-
cussed in [5].

3.1.3 Extension of Principal Curves to General Graphs

Equation (1) promotes the generalization of various existing
methods. It is worth noting that the quantity VðY; hG;WÞ
can be considered as the length of a principal graph in terms
of the square of ‘2 norm. In the case where G is a linear chain
structure, VðY; hG;WÞ is same as the length of a polygonal
line defined in [2]. However, general graphs or trees are
more flexible than principal curves since the graph structure
allows self-intersection. For principal graph learning, elastic
map [5] also defines a penalty based on a given graph. How-
ever, based on the above discussion, it is difficult to solve
problem (3) with respect to both the function hG and the
graph weights W within the elastic-maps framework. In
contrast, the proposed reversed graph embedding leads to a
simple and efficient algorithm to learn a principal tree or a
weighted undirected ‘1 graph with guaranteed conver-
gence. This will be clarified in Section 4.

3.2 Data Grouping

The second important component of the proposed frame-
work is to measure the fitness of latent variables Y to a
given data X in terms of a given graph G and projection
function hG. As the number of latent variables is not neces-
sarily equal to the number of input data points, we assume
that projected point hGðykÞ is a centroid of the kth cluster of

X so that input data points with high similarity form a clus-
ter. The empirical quantization error [3] is widely used as
the fitting criterion to be minimized for the optimal cluster
centroids, and it is also frequently employed in principal
curve learning methods [1], [2], [3], [4], [5], given by

‘ðX;Y; hGÞ ¼
XN
i¼1

mink¼1;...;K jjxi � hGðykÞjj
2
2: (4)

Based on Equation (4), we have the following loss functions.
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Data Reconstruction Error. If K ¼ N , we can reformulate
the Equation (4) by reordering Y as

‘NðX;Y; hGÞ ¼
XN
i¼1

jjxi � hGðyiÞjj
2
2: (5)

This formulation can be interpreted as the negative log-like-
lihood of data X that is i.i.d drawn from a multivariate nor-

mal distribution with mean hGðyiÞ and covariance matrix 1
2 I.

K-means. If K < N , we introduce an indicator matrix

P 2 f0; 1gN�K with the ði; kÞth element pi;k ¼ 1 if xi is
assigned to the kth cluster with centroid hGðykÞ, and pi;k ¼ 0

otherwise. Consequently, we have the following equivalent
optimization problem:

‘PðX;Y; hGÞ ¼
XN
i¼1

XK
k¼1

pi;kjjxi � hGðykÞjj
2
2; (6)

where
PK

k¼1 pi;k ¼ 1 and pi;k 2 f0; 1g; 8i ¼ 1; . . . ; N . This is
the same as the optimization problem of the K-means
method that minimizes the objective function (4).

Generalized Empirical Quantization Error. If K � N , a right

stochastic matrix P 2 ½0; 1�N�K with each row summing to

one is introduced, that is,
PK

k¼1 pi;k ¼ 1; 8i ¼ 1; . . . ; N . This
variant is equivalent to the above representation of indicator
matrix P if an integer solution P is obtained. When K is rel-
atively large, K-means that minimizes (6) might generate
empty clusters. To avoid this issue, we introduce the soft
assignment strategy by adding negative entropy regulariza-
tion as

‘PðX;Y; hGÞ ¼
XN
i¼1

XK
k¼1

pi;k

h
jjxi � hGðykÞjj

2
2 þ slog pi;k

i
; (7)

where s > 0 is a regularization parameter.
In this paper, we use ‘PðX;Y; hGÞ since it is a generalized

version of the other two cases and also has a close relation-
ship with the mean shift clustering method [42], Gaussian
mixture model, and the K-means method. Below, we dis-
cuss these interesting properties in detail. The proofs of
Propositions 1 and 2 are given in Appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2635657.

Proposition 1. The mean shift clustering [42] is equivalent

to minimizing objective function (7) with respect to a left stochas-

tic matrixP 2 ½0; 1�N�K with each column summing to one.

Proposition 2. Minimizing objective function (7) with respect
to a right stochastic matrix P 2 ½0; 1�N�K with each row sum-
ming to one can be interpreted as the Gaussian mixture model
with uniform weights.

Corollary 1. We have the following relationships among three
loss functions:

1) If s ! 0, minimizing (7) is equivalent to minimizing
(6) so that P ¼ P.

2) If s ! 0 and N ¼ K, minimizing (7) is equivalent to
minimizing (5).

According to the aforementioned results, we can briefly
summarize the merits of function (7). First, empty clusters

will never be created according to Proposition 2 for any
K � N . Second, the loss function takes the density of input
data X into account. In other words, the centroids obtained
by minimizing the loss function should reside in the high
density region of the data. Third, the loss function makes
the learning of graph structures computationally feasible
for large-scale data in the case of K < N , which will be dis-
cussed in Section 5.

3.3 Latent Sparse Graph Learning

The third important component of the proposed framework
is to learn a latent graph from data. To achieve this goal, we
investigate two special graph structures that can be learned
from data by formulating the learning problems as linear
programming. One is a tree structure, represented as a mini-
mum-cost spanning tree, the other is a weighted undirected
graph that is assumed to be sparse. Let Z ¼ fz1; . . . ; zKg �
RD be a dataset. Our task is to construct a weighted undi-
rected graph G ¼ ðV; E;WÞ with a cost fk;k0 associated with

edge ðk; k0Þ 2 E; 8k; k0 by optimizing similarity matrix

W 2 RK�K based on the assumption of the specific graph
structure.

3.3.1 Minimum Cost Spanning Tree

Let T ¼ ðV; ET Þ be a tree with the minimum total cost and
ET be the edges forming a tree. In order to represent and
learn a tree structure, we consider W as binary indicator
matrix where wk;k0 ¼ 1 if ðk; k0Þ 2 ET , and wk;k0 ¼ 0 other-

wise. The integer linear programming formulation of a
minimum spanning tree (MST) can be written as,

minW2W0

P
k;k0 wk;k0fk;k0 , where W0 ¼ fW 2 f0; 1gN�Ng \W0

and W0 ¼ fW ¼ WTg \ f12
P

k;k0 wk;k0 ¼ jVj � 1; wk;k ¼ 0; 8kg \
f12

P
k2S;k02S wk;k0 � jSj � 1; 8S � Vg. The first constraint of

W0 enforces the symmetric connection of undirected graph,
e.g., wk;k0 ¼ wk0;k. The second constraint states that the span-

ning tree only contains jVj � 1 edges. The third constraint
imposes the acyclicity and connectivity properties of a tree.
It is difficult to solve an integer programming problem
directly. Thus, we resort to a relaxed problem by letting
wk;k0 	 0, that is,

min
W2WT

XK
k¼1

XK

k0¼1

wk;k0fk;k0 ; (8)

where the set of linear constraints is given by WT ¼ W 	f
0g \W0. Problem (8) can be readily solved by the Kruskal’s
algorithm [43], [44].

3.3.2 Weighted Undirected ‘1 Graph

A complete graph with imposed sparsity constraints over
edge weights W called ‘1 graph is considered for learning a
sparse graph. An ‘1 graph is based on the assumption that
each data point has a small neighborhood in which the mini-
mum number of points that span a low-dimensional affine
subspace passing through that point. The affine function is

defined as zk ¼
PK

k0¼1 wk0;kzk0 ; 8k, where zk is the vector of tar-

geted point, W is the edge weight matrix, and Z is a set of k
data points in the small neighborhood. In practice, there may
exist noise in certain elements of zk, and a natural idea is to
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estimate the edgeweights by tolerating these errors.We intro-

duce error ��k 2 RD to each linear equation and the equality

constraints are formulated as zk ¼
PK

k0¼1;k0 6¼k wk0;kzk0 þ ��k; 8k.
In order to learn a similarity measurement for an undirected
graph, we impose nonnegative and symmetric constraints on

W, i.e., fW 	 0;W ¼ WTg. Generally, a sparse solution is
more robust and facilitates the consequent identification of
the test sample zk. Following the recent results on the sparse
representation problem, the convex ‘1-norm minimization
can effectively recover the sparse solution [29], [30]. Let

Z ¼ ½z1; . . . ; zK � 2 RD�K . We propose to learn W by solving
the following linear programming problem

min
W;f�kgKk¼1

XK
k¼1

XK

k0¼1

wk;k0fk;k0 þ �
XK
k¼1

jj��kjj1

s.t. zk ¼
XK

k0¼1;k0 6¼k

wk0;kzk0 þ ��k; 8k;W 	 0;W¼WT; diagðWÞ¼0;

(9)

where � > 0 is a parameter for weighting all errors and

jj��kjj1 ¼
PD

m¼1 j�mk j with ��k ¼ ½�1k; . . . ; �Dk �
T . According to (9),

two points zk and zk0 are similar (small fk;k0 ) if edge weight

wk;k0 is a large positive value. In other words, the coefficient

of linear combination is coincident with the edge weight on
a graph. Problem (9) is different from methods [29], [30]
that learn directed ‘1 graphs, and different from the method
[31] that learns undirected graphs using the probabilistic
model with Gaussian Markov random fields. Moreover,
data points Z can be different from the data points that are
used to compute costs.

3.3.3 Generalized Graph Structure Learning

For the ease of representation, we use a unified formulation
gðW;Z;FFÞ for learning a similarity graph, where Z is a given
dataset, W is the similarity matrix of a graph over the given
dataset, and FF is a cost matrix with the ðk; k0Þth entry as fk;k0 .

The feasible space ofW is denoted asW. Specifically, we solve
the following generalized graph structure learning problem
such that any graph learning problem that can be formulated
as linear programming with constraints represented asW can
be used in the following proposed framework, given by

min
W2W

gðW;Z;FFÞ: (10)

It is easy to identify the correspondences of problem (10) to
problems (8) and (9).

4 REGULARIZED PRINCIPAL GRAPH AND

STRUCTURE LEARNING

By combining the three building blocks discussed in Sec-
tion 3, we are ready to propose a unified framework for
learning a principal graph. We use the alternate convex
search algorithm to solve the proposed formulations by
simultaneously learning a set of principal points and an
undirected graph with guaranteed convergence.

4.1 Proposed Formulation

Given an input dataset X ¼ fx1; . . . ; xNg, we aim to
uncover the underlying graph structure that generates X.

Since the input data may be drawn from a noise model, it is
improper to learn G directly from X. To unveil the hidden
structure, we assume that (i) the underlying graph can be
recovered from the learning model represented in the form of
(10), e.g., the graph is an undirected weighted graph
G ¼ ðV; E;WÞwith specific structures; (ii) graph G satisfies the
reversed graph embedding assumption where the cost is

defined by fi;j ¼ jjhGðyiÞ � hGðyjÞjj
2
2, that is, if two vertices i

and j are close on Gwith high similaritywi;j, points hGðyiÞ and
hGðyjÞ should be close to each other; (iii) data points

fhGðyiÞg
N
i¼1 are considered as the denoised points of X so that

the movement of xi from the denoised point hGðyiÞ can be
measured by data grouping properly by lettingK ¼ N .

For clarity, we illustrate the relationships of various vari-
ables in Fig. 2. Based on the above assumptions, we propose
the novel regularized principal graph and structure learn-
ing framework by simultaneously optimizing the graph
weight matrix W, latent variables Y, projection function
hG 2 H, and soft-assignment matrix P as

min
hG2H;Y

min
W2W;P2Pr

gðW;X;FFÞ þ g‘PðX;Y; hGÞ

s.t. fi;j ¼ jjhGðyiÞ � hGðyjÞjj
2
2; 8i; j;

(11)

where g > 0 is a tradeoff parameter between the graph-
based regularizer and the total noise of the input data. It is
worth noting that (10) is the key component of (11) for learn-
ing a graph given hG and Y, and also contains the reversed
graph embedding objective (1) as a crucially important ele-
ment for two special graph learning (8) and (9). The second
term in the objective function (11) is the loss function (7).

In the following of this section, we propose a simple
method for solving problem (11) and present its conver-
gence and complexity analysis.

4.2 Optimization Algorithm

We focus on learning the underlying graph structure from
the data. Instead of learning hG 2 H and Y separately,1 we
optimize hGðyiÞ as a joint variable ci; 8i. Let C ¼ fc1; . . . ; cNg
where ci ¼ hGðyiÞ, and C ¼ ½c1; . . . ; cN � 2 RD�N . In the case
of weighted undirected ‘1 graph learning, the optimization
problem (11) with respect to variables fC;W;Pg are refor-
mulated as

Fig. 2. A cartoon illustrating the proposed formulation on the teapot
images. Each circle marker represents one teapot image. Our assump-
tion of the data generation process is that a graph G exists in the latent
space (e.g., a rotation circle in the left subplot), and each image yi is
then mapped to point hGðyiÞ in the input space by maintaining the graph
structure through the reversed graph embedding, and finally image xi is
observed conditioned on hGðyiÞ according to certain noise model.

1. To learn hG, we should define H properly, e.g., a linear projection
function might be possible as studied in our previous work [45].
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min
C;W;P

XN
i¼1

XN
j¼1

wi;jjjci � cjjj22 þ �
XN
i¼1

���
���xi �

X
j 6¼i

wj;ixj

���
���
1

þ g
XN
i¼1

XN
j¼1

pi;j

h
jjxi � cjjj22 þ slog pi;j

i

s.t. W 	 0;W ¼ WT ; diagðWÞ ¼ 0;
XN
j¼1

pi;j ¼ 1; pi;j 	 0; 8i; j:

(12)

In the case of learning an MST, the feasible space W is WT ,
and the objective function is similar to (12) by removing the
second term from the objective function. For simplicity, we
do not explicitly show the formulation of learning a span-
ning tree.

Problem (12) is a biconvex optimization problem [46]: for
fixed P and W, optimizing C is a convex optimization prob-
lem; for fixed C, optimizing P andW is also convex. We pro-
pose to solve problem (12) by using the alternate convex
search, a minimization method to solve a biconvex problem
where the variable set can be divided into disjoint blocks
[46]. The blocks of variables defined by convex subproblems
are solved cyclically by optimizing the variables of one
block while fixing the variables of all other blocks. In this
way, each convex subproblem can be solved efficiently by
using a convex minimization method. Below, we discuss
each subproblem in details and the pseudo-code of the pro-
posed method is given in Algorithm 1.

Algorithm 1. Principal Graph & Structure Learning

1: Input: Data X 2 RD�N , �, s, and g

2: Initialize C ¼ X
3: repeat
4: fi;j ¼ jjci � cjjj22; 8i; j

5: pi;j ¼
exp �jjxi�cjjj2=sð ÞPN

j¼1
exp �jjxi�cjjj2=sð Þ

; 8i; j

6: Solve the following linear programming problem:
- (14) for a weighted undirected ‘1 graph
- (15) for a spanning tree

7: C ¼ XPð2g�1Lþ LLÞ�1

8: until Convergence

4.2.1 Fix C and Solve P;W

Given C, problem (12) with respect to P and W can be
solved independently. Due to the decoupled variables of P
in rows, we can solve each row independently. According
to Proposition 2, we have the analytic solution of P given by

pi;j ¼
exp �jjxi � cjjj2=s

� �

PN
j¼1 exp �jjxi � cjjj2=s

� � ; 8i; j: (13)

For problem (12) with respect toW, we have to solve the fol-
lowing optimization problem:

min
W

traceðFFTWÞ þ �
XN
i¼1

���
���xi �

X
j 6¼i

wj;ixj

���
���
1

s.t. W 	 0;W ¼ WT ; diagðWÞ ¼ 0;

(14)

where FF 2 RN�N with the ði; jÞth element fi;j ¼ jjci � cjjj22.
For problem (11) to learn a spanning tree structure, we solve
the following problem:

minW2WT traceðFF
TWÞ: (15)

As discussed in Section 3.3, Problem (15) can be solved by
the Kruskal’s algorithm. Problem (14) is a linear program-
ming problem, which can be solved efficiently by off-the-
shelf linear programming solver for small- or moderate-
sized datasets, such as Mosek [47].

4.2.2 Fix P;W and Solve C

Given P and W, problem (12) with respect to C can be
rewritten as

min
C

trace Cð2Lþ gLLÞCT � 2gCTXP
� �

; (16)

where the graph Laplacian matrix L ¼ diagðW1Þ �W and

diagonal matrix LL ¼ diagð1TPÞ. Problem (16) is an uncon-
strained quadratic programming. We have the analytic
solution given by

C ¼ XPð2g�1Lþ LLÞ�1; (17)

where the inverse of matrix 2g�1Lþ LL always exists since L
is a positive semi-definite matrix and diagonal matrix LL is
always positive definite according to (13).

4.3 Convergence and Complexity Analysis

Since problem (12) is non-convex, there may exist many
local optimal solutions. Following the initialization strategy
of the mean shift clustering, we initialize C to be the original
input data as shown in Algorithm 1. The theoretical conver-
gence analysis of Algorithm 1 is presented in the following
theorem and its proof is given in the supplementary mate-
rial, available online.

Theorem 1. Let fW‘;C‘;P‘g be the solution of problem (12) in
the ‘th iteration, and %‘ ¼ %ðW‘;C‘;P‘Þ be the corresponding
objective function value, then we have:

(i) f%‘g is monotonically decreasing;
(ii) Sequences fW‘;C‘;P‘g and f%‘g converge.

According to Theorem 1, we define the stopping criterion
of Algorithm 1 in terms of the relative increase in the func-
tion value compared to the last iteration, and fix it as 10�5 in
all experiments. The empirical convergence results are
shown in Section 6.1.

The computational complexity of Algorithm 1 for learn-
ing a tree structure is determined by three individual parts.
The first part is the complexity of running Kruskal’s algo-
rithm to construct a minimum spanning tree. It requires

OðN2DÞ for computing a fully connected graph and

OðN2logNÞ for finding a spanning tree. The second part is
dominated by computing the soft assignments of samples,

which has a complexity of OðN2DÞ. The third part is domi-
nated by the inverse of a matrix of size N �N that takes

OðN3Þ operations and matrix multiplication that takes

OðDN2Þ operations. Thus, the total complexity for each iter-

ation is OðN3 þDN2Þ. For learning an undirected weighted
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‘1 graph by solving problem (14), the only difference is the
complexity of linear programming, which can be solved
efficiently by Mosek [47]. In Section 5, we will extend the
proposed algorithm for handling large-scale data.

5 REGULARIZED PRINCIPAL GRAPH AND

STRUCTURE LEARNING ON LARGE-SCALE DATA

In order to reduce the high computational complexity of
Algorithm 1 for large-scale data, we propose to incorporate
two strategies into the proposed model for fast learning by
using landmarks and side information.

5.1 Graph Learning with Side Information

Instance-level constraints are useful to express a priori
knowledge about which instances should or should not be
grouped together, which have been successfully applied to
many learning tasks, such as clustering [48], metric learning
[49], and kernel learning [50]. In the area of clustering, the
most prevalent form of advice are conjunctions of pairwise
instance level-constraints of the form must-link (ML) and
cannot-link (CL) which state that pairs of instances should
be in the same or different clusters respectively [48]. Given
a set of points to cluster and a set of constraints, the aim of
clustering with constraints is to use the constraints to
improve the clustering results.

We consider certain structure-specific side information
for guidance in learning the similarity matrix W and
computational reduction instead of optimizing the full
matrix. For this purpose, we take into account the CL con-
straints. LetN i be a set of data points which might be linked
to data point xi. On the contrary, data points that are not in
N i will belong to CL set. By incorporating the CL side infor-
mation into the proposed framework, we can derive the fol-
lowing optimization problem for learning the ‘1 graph
representation given by

min
W

XN
i¼1

X
j2N i

wi;jfi;j þ �
XN
i¼1

���
���xi �

X
j2N i

wj;ixj

���
���
1

s.t. wi;j 	 0; wi;j ¼ wj;i; 8i; j
wi;j ¼ 0; 8i; j 62 N i;

(18)

which can be equivalently transformed into linear program-
ming optimization problem and can be solved accurately
for large-scale data by using the off-the-shelf toolbox.

5.2 Landmark-Based Regularized Principal Graph

In order to handle large-scale data, we extend the pro-
posed regularized principal graph learning framework by
using a landmark-based technique. Landmarks have been
widely used in clustering methods to deal with large-
scale data [51], [52]. Random landmark selection method
is widely used for spectral clustering [51], [52]. It is well
known that selecting landmarks can further improve clus-
tering performance with a certain adaptive strategy, such
as K-means [53], a variety of fixed and adaptive sampling
schemes, and a family of ensemble-based sampling algo-
rithms [54].

Our regularized principal graph and structure learning
framework can inherently take landmarks into account
through the data grouping. Taking the weighted undirected

‘1 graph based framework as an example, the optimization
problem by considering landmarks is given by

min
C;W;P

XK
k¼1

XK

k0¼1

wk;k0 jjck � ck0 jj22 þ �
XK
k¼1

���
���zk �

X
k0 6¼K

wk0;kzk0
���
���
1

þ g
XN
i¼1

XK
k¼1

pi;k

h
jjxi � ckjj22 þ slog pi;k

i

s.t. W 	 0;W ¼ WT ; diagðWÞ ¼ 0

XK
k¼1

pi;k ¼ 1; pi;k 	 0; 8i ¼ 1; . . . ; N; k ¼ 1; . . . ; K;

(19)

where Z ¼ fz1; . . . ; zKg is a set of landmarks of size K.
Moreover, our proposed methods can automatically adjust
centroids of landmarks during the optimization procedure.
Due to the non-convexity of above objective function, we
have to properly initialize these landmarks. As shown in
the literature [52], [53], K-means can generally obtain better
clustering performance for spectral clustering methods. In
this paper, we follow this idea and use centroids obtained
from K-means to initialize Z. The pseudo-code is shown in
Algorithm 2. By following the same analysis procedure as
Section 4.3, the computational complexity of Algorithm 2 is

OðK3 þDKN þDK2Þ which is significantly smaller than

OðN3 þDN2Þ of Algorithm 1 if K 
 N . Hence, Algorithm
2 is practical for large-scale data with a large N .

Algorithm 2. Large-Scale Principal Graph & Structure
Learning

1: Input: Data X 2 RD�N , �, s, g andK 
 N
2: Obtain Z 2 RD�K by calling theK-means method
3: Initialize C ¼ Z
4: repeat
5: fk;k0 ¼ jjck � ck0 jj22; 8k; k0

6: pi;k ¼
exp �jjxi�ck jj2=sð ÞPK

k¼1
exp �jjxi�ckjj2=sð Þ

; 8i; k

7: Solve the following linear programming problem:
- (14) for a weighted undirected ‘1 graph
- (15) for a spanning tree

8: C ¼ XPð2g�1Lþ LLÞ�1

9: until Convergence

6 EXPERIMENTS

We conduct extensive experiments to evaluate the proposed
models for learning either spanning trees or weighted undi-
rected ‘1 graphs on various synthetic datasets and six real
world applications. The source code of the proposed meth-
ods is freely available from http://liwang8.people.uic.edu/
TPAMI2016-PGSL.html.

6.1 Convergence and Sensitivity Analysis

We perform a convergence analysis of Algorithm 1 using a
synthetic tree dataset. Fig. 3 shows the empirical conver-
gence results obtained by learning two different graph
structures as well as their intermediate results. The top
panel of Fig. 3 shows the empirical convergence results by
illustrating the relative difference of the objective function

2234 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 11, NOVEMBER 2017



value in terms of the number of iterations in Algorithm 1.
We observe that the proposed algorithm converges in less
than 20 iterations. This is consistent with the result of the
theoretical analysis in Section 4.3. From the bottom panel of
Fig. 3, we can see that when Algorithm 1 continues with
more iterations, the tree structure becomes smoother. This
empirically verifies the intuition of the reverse graph
embedding.

We then perform a parameter sensitivity analysis by
using the distorted S-shape dataset to demonstrate how the
algorithm behaves with respect to parameters s, g and �. As
� only appears in Algorithm 1 for learning an ‘1 graph, we
investigate the sensitivity of parameters in terms of learning
an ‘1 graph. Results obtained from learning an ‘1 graph can
be similarly applied to Algorithm 1 for learning a spanning
tree. Fig. 4 shows the ‘1 graphs constructed by varying one
parameter and fixing the others. We have the following
observations. First, according to Fig. 4a, it is clear that the
smaller g is, the shorter the length of the S-shape curve is. In
contrast, the larger g is, the more faithful the curve passes
through the middle of the data. Therefore, g is an important
parameter that controls the trade-off between the curve fit-
ting error and the length of a principal graph. Second, as
shown in Fig. 4b, the graph structure becomes smoother
when increasing s. This is also stated in Propositions 1 and
2 that explore the relationships between the proposed for-
mulation and the mean-shift clustering. In other words, a
large s encourages more data points to merge together. The
data movement represented by variable matrix C in Algo-
rithm 1 is also restricted on a graph and the length of the
graph should be minimized so that data points in C will be
smoother so as to reach the goal. The choice of bandwidth
parameter in Algorithm 1 is then similar to that in the
mean-shift clustering. As suggested in [55], it is best to
explore a range of bandwidths instead of estimating one
from data by minimizing a loss function or more heuristic
rules since clustering is by nature exploratory, so is the
structure learned in this paper. Third, the larger � is, the

more edges the learned graph contains as shown in Figs. 4c,
4d, 4e, and 4f). This is the reason why the noise term
becomes large and less data points are required to represent
the current data point if � is a large value.

Due to the exploratory nature of learning a graph struc-
ture from data and the lack of evaluation metrics for graph
structure learning in an unsupervised setting, the automa-
tion of setting parameters by using the provided data only
is generally difficult. However, the aforementioned parame-
ter sensitivity analysis suggests a pragmatic way to tune
parameters for learning an expected graph structure. The
recommended procedure is given as follows: first, setting s

to be a small value, and then tuning g from large value to
small so as to fit the data properly, finally increasing s to
obtain a reasonable structure. In order to learn an ‘1 graph
from data, the initial graph structure should be constructed
by solving problem (14) using a proper � such that the
weight matrix W captures the key structure of the input
data. And then, the above recommended procedure for tun-
ing s and g is applied. For tuning s and g automatically
from data, we have studied in our previous work [35] by
using leave-one-out-maximum likelihood criterion
described in [13] and gap statistics [56] for s and g respec-
tively. As discussed in [55], it is natural to tune parameter s
in a different range. In the following experiments, we will
take the above tuning strategy for setting all parameters in a
large range, and all parameters used will be reported for the
reproducibility of the experiments.

6.2 Synthetic Data

We evaluate the performance of Algorithm 1 for learning
either a spanning tree or an ‘1 graph by comparingwith three
baseline methods, including the polygonal line method [2],
SCMS [13], and Mapper [23], on six synthetic datasets.
Among them, the first two datasets are also used in [2], [13].
In the case of learning an ‘1 graph, we incorporate neighbors
of each data point as the side information, i.e., data points
not in the neighborhood of a data point are considered as a
set of cannot-links for the data point. In this paper, we take
nn-nearest neighbor as a showcase for side-information. The
experiments are conducted in two settings. The first setting
is to evaluate the five methods for learning curves, while the
second setting is to investigate other structures of the data-
sets, including loops, self-intersection and disconnected

Fig. 4. Results of parameter sensitivity analysis of Algorithm 1 by learn-
ing ‘1 graph performed on the distorted S-shape dataset by varying dif-
ferent parameters: (a) varying g; (b) varying s; (c)-(f) varying �.

Fig. 3. Convergence analyses and intermediate results of proposed
methods on the Tree dataset by learning two different graph structures.
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components. For all experiments in this section, the parame-
ters of compared methods are set as shown in Table 1. In
addition, Mapper is carefully tuned by trying different filter
functions and covers where Gaussian kernel function and
balanced 1-d cover are chosen for the best visualization
results. We take single linkage clustering as the default clus-
tering method [23], and the rest of parameters are shown in
the bottom-left side of resulting figures. It is worth noting
that the tuning of parameters in the proposed method is tun-
ing easier than tuning s in SCMS, which needs finer tuning
in order to achieve comparable results.

The first two columns of Fig. 5 show the results from the
principal curve learning setting. We have the following
observations: 1) The proposed methods can obtain smoother
curves than the other tested methods. 2) The polygonal line
method fails on the Spiral data. We also see that SCMS can-
not obtain a curve structure because many projected points
do not have ordering information, and some points are scat-
tered as shown in the Spiral data. This leaves a non-trivial
problem to learn the underlying structure by using SCMS.
Although Mapper outputs clusters and their connectivity
structure for the overlapping of any two clusters, there are
several observations: i) many isolated clusters are formed
due to the noisy data points; ii) the structure of data points
in each cluster is undefined; and iii) the global structure of
each dataset is not well captured by comparing to the
underlying graph structure. Our proposed method does not
have these problems.

The last four columns of Fig. 5 show the results obtained
from the datasets containing loop, self-intersection, and dis-
connected components. The polygonal line method fails on
all four datasets due to the improper assumption of princi-
pal curves. We should point out that the spanning tree is
naturally used for learning a tree structure, so the proposed
method for learning a tree structure outperforms the one
proposed for learning an ‘1 graph as shown in the results

TABLE 1
Parameters Used in the Proposed
Algorithm for Synthetic Datasets

Dataset N s g � nn SCMS s

Distorted S-shape 100 0.01 0.5 1.0 5 0.07
Spiral 200 0.01 0.5 1.0 10 0.1
Circle 100 0.1 0.5 1.0 10 0.4
Two-moon 200 0.01 3 0.1 5 0.1
Tree 300 0.01 10 1.0 5 0.05
Three-clusters 300 0.01 0.5 0.1 5 0.1

The proposed method for learning an ‘1 graph and a spanning tree share the
same set of parameters, while SCMS are tuned in fine-grid to achieve reason-
able principal points.

Fig. 5. Results of five compared methods performed on six synthetic datasets containing various situations including curves, loops, self-intersections,
and multiple disconnected components. The first and second rows show the results of our proposed methods for learning either an ‘1 graph or a
spanning tree. The last three columns report the results generated by the polygonal line method, SCMS, and Mapper, respectively. The results of
Mapper can be interpreted as: the size of a node indicates the number of points in the set represented by the node; the color of a node indicates the
value of filter function (red being high and blue being low) by a suitable average taken over the corresponding set, and the parameters used to gener-
ate figures are shown in the bottom-left side of each figure.
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on the tree data. However, the latter outperforms the former
for datasets with multiple disconnected components and
loops. All results in the second setting are consistent with
those obtained in the first setting.

6.3 Rotation of Teapot Images

A collection of 400 teapot images from [36] are used.2 These
images were taken successively as a teapot was rotated 360
degree. Our goal is to construct a principal graph that
organizes the 400 images. Each image consists of 76� 101
pixels and is represented as a vector. The data in each
dimension is normalized to have zero mean and unit stan-
dard deviation. Similar to [37], a kernel matrix X is gener-

ated whereXði; jÞ ¼ expð�jjxi � xjjj2=DÞ.
We run our proposed method using the kernel matrix as

the input. We set s ¼ 0:5; g ¼ 100; � ¼ 1 and nn ¼ 10. We
first perform PCA on the kernel matrix and project it to a
36-dimensional space that keeps 95 percent of total energy.
The experimental results of the proposed method for learn-
ing a spanning tree and an ‘1 graph are shown in Fig. 6.
The principal curves (Figs. 6a and 6c) are shown in terms
of the first three columns of the learned projection matrix
W as the coordinates where each dot yi represents the ith

image and the sampled images at intervals of 30 are plot-
ted for the purpose of visualization. Figa. 6b and 6d show
the linear chain dependency among the teapot images fol-
lowing the consecutive rotation process. We can see that
the curve generated by our method is in agreement with
the rotating process of the 400 consecutive teapot images.
For this data, ‘1 graph is more reasonable than spanning
tree since the underlying manifold forms a loop. This is
clearly demonstrated in Fig. 6.

A similar result is also recovered by CLUHSIC, which
assumes that the label kernel matrix is a ring structure [37].
However, there are two main differences. First, the principal
curves generated by our methods are much smoother than
that obtained by CLUHSIC (see Fig. 4 in [37]). Second, our
method learns the adjacency matrix from the given dataset,
but CLUHSIC requires a label matrix as a priori. A two-
dimensional representation of the same set of teapot images
is given in [36], where Maximum Variance Unfolding
(MVU) is used to arrange the images in a circle (see Fig. 3 in
[36]). We attempted to run MVU by keeping 95 percent
energy, i.e., d ¼ 36. However, storage allocation fails due to
the large memory requirement of solving a semi-definite
programming problem in MVU. Hence, MVU cannot be
applied to learn a relatively large intrinsic dimensionality.
However, our method does not suffer from this issue.

6.4 Hierarchical Tree of Facial Images

Facial expression data3 is used for hierarchical clustering,
which takes into account both the identities of individuals
and the emotion being expressed [37]. This data contains
185 face images (308� 217 RGB pixels) with three types of
facial expressions (NE: neutral, HA: happy, SO: shock)
taken from three subjects (CH, AR, LE) in an alternating
order, with around 20 repetitions each. Eyes of these facial
images have been aligned, and the average pixel intensities
have been adjusted. As with the teapot data, each image is
represented as a vector, and is normalized in each dimen-
sion to have zero mean and unit standard deviation.

A kernel matrix is used as the input to Algorithm 1 for
learning a spanning tree in the setting of s ¼ 0:01 and g ¼ 1.
The experimental results are shown in Fig. 7. We can clearly
see that three subjects are connected through different
branches of a tree. If we take the black circle in Fig. 7a as the
root of a hierarchy, the tree forms a two-level hierarchical
structure. As shown in Fig. 7b, the three facial expressions
from three subjects are also clearly separated. A similar
two-level hierarchy is also recovered by CLUHSIC (Fig. 3b
in [37]). However, the advantages of using the proposed
method discussed above for the teapot images also apply
here. In addition, we can observe more detailed information

Fig. 6. Experimental results of the proposed methods applied to Teapot
images. (a) Principal circle generated by the proposed method for learn-
ing a ‘1 graph. Each dot represents one teapot image. Images following
the principal curve are plotted at intervals of 30 for visualization. (b) The
adjacency matrix of the circle follows the ordering of the 400 consecutive
teapot images with 360 degree rotation. (c)-(d) The principle curve and
the adjacency matrix are obtained by the proposed method for learning
a spanning tree.

Fig. 7. Experimental results of our proposed method for learning a span-
ning tree performed on facial expression images. (a) The generated hier-
archical tree. Each dot represents one face image. Images of three types
of facial expressions from three subjects are plotted for visualization.
The black circle can be considered as the root of the hierarchical struc-
ture for achieving two layers hierarchy over nine subjects; (b) the adja-
cency matrix of the tree on nine blocks indicates that each block
corresponds to one facial expression of one subject.

2. http://www.cc.gatech.edu/�lsong/data/teapotdata.zip 3. http://www.cc.gatech.edu/�lsong/data/facedata.zip
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from the tree structure. For example, LE@SO is at the junc-
tion with other two subjects, i.e., AR@SO and CH@SO,
which can be observed from the 9th row of the adjacency
matrix as shown in Fig. 7b. This observation suggests that
the shock is the most similar facial expression among three
subjects. However, CLUHSIC is not able to obtain this
information.

6.5 Breast Cancer Progression Path

We demonstrate the ability of the proposed method to infer
a putative cancer progression path using static tumor sam-
ples. To this end, we interrogate a large-scale, publicly avail-
able breast cancer dataset [57]. It contains the gene
expression and copy number data of over 25,000 genes
obtained from 144 normal breast tissue and 1,989 tumor tis-
sue samples. By using a non-linear regression method, a
total of 1,140 genes were identified to be associated with
cancer development [41]. To visualize the cancer progres-
sion path, the learned principal points are projected onto a
three-dimensional space spanned by the first three principal
components of the data, and the tree structure remains as
that learned in the original high-dimensional space.

In Fig. 8, we visualize the underlying data structures
obtained by the proposed method, SCMS and Mapper,
which may represent the progression path of breast cancer
towards malignancy. As the polygonal line method does
not work well on this data, we do not report the result. To

assist in visualization, we color-code each tumor sample
with its PAM50 molecular subtype label [58]. The PAM50
system broadly categorizes tumor samples into five sub-
types, including normal-like, luminal A, luminal B, HER2+
and basal, based on the expression of 50 gene transcripts.
We also use the 144 normal breast tissue samples in the
dataset as a baseline. The revealed data trend supports a lin-
ear bifurcating progression path for breast cancer progres-
sion [59]. It is evident that the linear progression path tracks
logically from normal tissue samples through luminal sub-
types and then splits to either the HER2+ or the basal sub-
types. The latter two are known to be the most aggressive
breast tumor types. Our findings are consistent with previ-
ous studies [24], [41]. The comparisons of baseline methods
based on the results shown in Fig. 8 are the same as those
discussed in Section 6.2. We stress that the hypothesis of the
interpretation of cancer development from the progression
path requires additional biological verification. In this
paper, we consider it as a plausible hypothesis only, and
also show some possible analysis of the learned progression
path in the supplementary material, available online.

6.6 Skeletons of Optical Characters

We use the proposed algorithm for learning an ‘1 graph to
find smooth skeletons of handwritten character templates,
which can be used to recover the trajectory of the penstroke.
The optical characters generally contains loops, self intersec-
tions, and bifurcation points. Principal curves have been
applied for similar purposes [13], [14]. Kegl et al. [14]
extends their polygonal line algorithm [2] to handle loops
and self intersections by modifying it with a table of rules
and adding preprocessing and postprocessing steps. How-
ever, the table of rules has to be specially designed for the
self intersections and it is difficult to extend to data sets
with dimensionality larger than two. Ozertem [13] proposed
KDE-SCMS, which can give satisfactory results without any
rule or model based special treatment of the self intersec-
tions. KDE-SCMS can obtain a set of principal points to
describe the skeletons of handwritten characters, but there
is no explicit structures of these templates. Our proposed
method for learning an ‘1 graph can effectively handle
loops, self intersections, and disconnected components
(possible noises). Moreover, we do not require a set of rules
and simultaneously return the smooth skeletons of tem-
plates in the form of graphs.

The handwritten digits data set provided by Kegl, which
can be downloaded from his website,4 is the same dataset
reported in [13], [14]. Following the preprocessing in work
[14], we first transform black-and-white character templates
into two-dimensional data sets where a unit length of the
coordinate system is set to the width and height of a pixel, so
that each pixel has integer coordinates. Then, we add pixels
with value 1 into the data set. Finally, we scale the data set
into a square areawith unitwidth and height.We ran our pro-
posed method for learning a weighted undirected ‘1 graph
with one set of parameters for all handwritten characters, that
is s ¼ 0:008; g ¼ 100; � ¼ 0:4 and nn ¼ 4. Fig. 9 shows the
results of sampled smooth skeletons on different character

Fig. 8. Progression path of breast cancer data. (a) The tree structure
learned by the proposed method for learning a spanning tree; (b) the
topological structure obtained by mapper.

4. https://www.lri.fr/�kegl/researchUdeM/research/pcurves/
implementations/SkeletonizationTemplates/
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templates with various written styles. More examples are
shown in the supplementarymaterial, available online.

6.7 Experiments on Large-Scale Datasets

We tested our proposed Algorithm 2 on two large-scale
datasets: PenDigits and MNIST.5 The PenDigits database is
a handwritten digit dataset of 250 samples from 44 writers,
which consists a total of 10,992 images represented by 16
features using sampled coordination information. The
MNIST database of handwritten digits has a total of 70,000
samples. The digits have been size-normalized and centered
in a fixed-size image. Each image of size 28� 28 is repre-
sented as 784 features. We scale each gray pixel to ½0; 1� by
dividing by 255. Both handwritten digit datasets have labels
from 0 to 9. In order to visualize the learned graph, we
apply PCA to keep 95 percent of total energy and obtain
D ¼ 9 and D ¼ 154 for PenDigits and MNIST, respectively.
We further rescale the projected low-dimensional sample
by dividing by the maximum absolute value of each dimen-
sion independently.

We test Algorithm 2 for learning a tree structure. The
same set of parameters, i.e., s ¼ 0:1 and � ¼ 0:1, is fixed for
both datasets. Moreover, we apply the K-means method to
obtain 1,000 centroids and use these centroids to initialize Z
in Algorithm 2. The label of each centroid is obtained by
using majority voting of labels of data points which are
assigned to this cluster. Fig. 10 shows the results obtained
by the proposed method on the two datasets. The learned
adjacency matrixW is reported in Figs. 10a and 10b for Pen-
Digits and MNIST respectively, where data points are
reshuffled according to their labels from 0 to 9. We imple-
mented the method in MATLAB and the empirical CPU
times spent on learning W are 53.51 and 222.75 seconds for
PenDigits and MNIST, respectively. We have the following
observations: First, the learned adjacency matrices demon-
strate a good shape of diagonal matrix. In other words, data
points with the same labels are grouped together, which is
useful for clustering. In addition, we have an explicit tree
structure as shown in Fig. 10c drawn in the first three princi-
pal components, which further demonstrate the relation-
ships among different labels. From Fig. 10c, it is clear to see

that there is a path that starts from digit 0, passes through 6,
5, 9, and finally goes to 4. This is interesting since digits 0, 6,
5, and 9 are similar in the bottom halves of the images, while
digits 9 and 4 are similar in terms of the top half of the
images. That is, each path on the tree represents a certain
type of manifold over digits. Furthermore, our proposed
Algorithm 2 can be used for exploratory analysis on a large
amount of data points.

7 CONCLUSION

In this paper, we propose a simple principal graph and
structure learning framework, which can be used to
obtain a set of principal points and a graph structure,
simultaneously. The experimental results demonstrate
the effectiveness of the proposed method on various real
world datasets of different graph structures. Since our
principal graph model is formulated for a general graph,
the development of principal graph methods for other
specific structures are also possible. As a future work,
we will explore principal graph learning on other graphs
such as K-nearest neighbor graphs and apply it to other
real-world datasets.
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