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Abstract

Single-cell transcriptome sequencing now routinely samples thousands of cells, potentially
providing enough data to reconstruct causal gene regulatory networks from observational data.
Here, we present Scribe, a toolkit for detecting and visualizing causal regulatory interactions
between genes and explore the potential for single-cell experiments to power network
reconstruction. Scribe employs Restricted Directed Information to determine causality by
estimating the strength of information transferred from a potential regulator to its downstream
target. We apply Scribe and other leading approaches for causal network reconstruction to
several types of single-cell measurements and show that there is a dramatic drop in
performance for "pseudotime” ordered single-cell data compared to true time series data. We
demonstrate that performing causal inference requires temporal coupling between
measurements. We show that methods such as “RNA velocity” restore some degree of coupling
through an analysis of chromaffin cell fate commitment. These analyses therefore highlight an
important shortcoming in experimental and computational methods for analyzing gene
regulation at single-cell resolution and point the way towards overcoming it.

Introduction

Most biological processes, either in development or disease progression (Faith et al., 2007a;
Friedman et al.,, 2000a; Langfelder and Horvath, 2008a; Margolin et al., 2006; Meyer et al.,
2008a), are governed by complex gene regulatory networks. In the past few decades, numerous
algorithms for inferring networks from observational gene expression data (Faith et al., 2007b;
Friedman et al., 2000b; Langfelder and Horvath, 2008b; Margolin et al., 2006; Meyer et al.,
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2008b) have been developed. However, these algorithms have not been widely adopted by
experimental biologists in part because they typically require an infeasible number of
independent replicate observations.

A key challenge in regulatory network inference is distinguishing upstream regulatory genes
from their targets directly downstream (see Methods for a formal description of the problem).
Most methods that aim to do so are predicated on the notion that changes in regulators should
precede changes in their targets in time (Bar-Joseph et al., 2012). Granger causality (GC)
(Granger, 1969) is a statistical hypothesis test for determining whether one time series (X1) is
useful in forecasting another (X2) which has been applied to infer biological networks (Zou and
Feng, 2009). However, GC assumes a linear relationship between the regulator and the target,
which is violated in many biological settings (Hill et al., 2016). Convergent Cross Mapping
(CCM) (Sugihara et al., 2012), a more recent technique based on state-space reconstruction
(Takens, 1981) can detect pairwise non-linear interactions. However, this method is limited to
deterministic systems, and thus may be poorly suited for many cellular processes (e.g. cell
differentiation), which are inherently stochastic.

Single-cell transcriptome sequencing experiments (scRNA-seq) have attracted the attention of
algorithm developers working on gene regulatory network inference for two reasons. First,
scRNA-seq experiments now routine produce thousands of independent measurements may
open the door to sufficiently-powered inference (Liu and Trapnell, 2016). Second, algorithms
that order cells along “trajectories” that describe development or disease progress offer a
tremendously high “pseudotemporal” view of gene expression kinetics (Haghverdi et al., 2016;
Qiu et al., 2017a; Setty et al., 2016; Trapnell et al., 2014). The recently introduced SCENIC
method (Aibar et al., 2017) combines GENIE3 (Huynh-Thu et al., 2010) with regulatory binding
motif enrichment to simultaneously cluster cells and infer regulatory networks. Other studies
have inferred regulatory networks from scRNA-seq data using differential equations (Matsumoto
et al., 2017; Ocone et al., 2015), information measures (Chan et al., 2017), bayesian network
analysis (Sanchez-Castillo et al., 2017), boolean network methods (Hamey et al., 2017) or
linear regression techniques (Huynh-Thu et al., 2010; Papili Gao et al., 2017; Wei et al.,
2017). However, most methods don’t explicitly leverage time-series data to identify causal
interactions, and more importantly, most fail to recover the correct network even in simple
settings (Babtie et al., 2017; Fiers et al., 2018).

Here, we introduce Scribe, a scalable toolkit for inferring causal regulatory networks that relies
on Restricted Directed Information (RDI) (Rahimzamani and Kannan, 2016). In contrast to GC
and CCM, Scribe learns both linear and non-linear causality in deterministic and stochastic
systems. It also incorporates rigorous procedures to alleviate sampling bias and builds upon
novel estimators and regularization techniques to facilitate inference of large-scale causal
networks. We apply Scribe to a variety of different types of real and simulated single-cell gene
expression data, including single-cell RNA-seq and live imaging. In concordance with theory, we
demonstrate that Scribe has superior performance compared to existing methods when the
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observations consist of true time-series data. However, current scRNA-seq protocols do not
generate true time-series data since a cell needs to be lysed in order to sequence the
transcriptome. Individual cells cannot be followed over time, breaking temporal coupling
75  between measurements. We show a surprising result that there is a dramatic drop in
performance in causal network accuracy when temporal coupling between measurements is
lost. We then demonstrate that “RNA velocity”, a recently developed analytic technique for
single-cell RNA-seq analysis, restores temporal coupling and improves causal regulatory
network inference. Our results suggest that preserving this coupling should be a major objective
80 of the next generation of single-cell measurement technologies.

Results:

Scribe, a toolkit for inferring and visualizing causal regulations from single cell
time-series datasets.

We aimed to develop a method for causal regulatory inference that exploits the power and

85 resolution of single-cell RNA-seq experiments. We define causality as the strength of
information transferred from one variable, a potential regulator, to another time-delayed
response variable, a potential target, where a higher score implies stronger evidence for a
causal interaction and vice versa. Previously, we proposed RDI as a novel information metric to
accurately and efficiently quantify causality (Rahimzamani and Kannan, 2016, 2017). Built upon

90 RDI, we developed a toolkit, Scribe, that is designed for the analysis of time-series datasets,
and is especially tailored for single cell-RNA-seq (Supplementary Figure 1, Fig 1A).

Scribe aims to be agnostic to the particular measurement technology used in an experiment,
simply requiring as input time-ordered gene expression profiles for each cell as they progress
along a time axis. It estimates causality scores using RDI for pairs of genes which are in turn
95  used to build a causal regulatory network (Fig 1A, B). Specifically, the RDI between two genes
is formulated and quantified as the mutual information of the regulator’s past state (z:-d4) and
the target’'s current state (¥:) conditioned over the target's history (¥:—1) (or formally,

I(xt—det’yt—l)) (Fig 1A). Scribe can calculate RDI in several different ways, each of which is
designed to address challenges posed by single-cell expression data. Scribe uses a novel

100 information estimator for RDI we recently developed to account for data sparsity (Gao et al.,
2017), a common feature of single-cell genomic experiments. In order to alleviate sampling
biases, for example, key transitory states are underrepresented while stationary states are
overrepresented, Scribe can calculate two adjusted RDI scores: termed uniformization of
(conditional) mutual information (URDI or ucRDI, respectively) to quantify the potential causality

105 (Rahimzamani and Kannan, 2017). These scores capture how much influence a regulator can
potentially exert on target without cognizance to the regulator’s distribution (Supplementary
Figure 1A).


http://dx.doi.org/10.1101/426981
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Sep. 25, 2018; doi: http://dx.doi.org/10.1101/426981. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

From pairwaise RDI scores, Scribe assembles and refines a regulatory network between genes.
However, many causal interactions could be indirect, and although Scribe could remove them by

110 computing RDI between each pair of genes conditional on other potential regulators, this greatly
increases the required number of samples and its running time and is typically impractical.
Scribe therefore first refines the inferred network using Context Likelihood of Relatedness
(CLR)(Faith et al., 2007b) and can be further sparsified with an optional method for directed
graph regularization on large networks (see Methods for more details). Finally, Scribe offers the

115  user a variety of ways to visualize and plot the resulting network or explore individual regulatory
interactions in more detail (Fig 1B).

To benchmark Scribe’s performance in inferring causal networks from time-series data, we
tested it using a simplified simulation involving “real-time” measurements, in which all genes are
measured in a set of individual cells that are followed over time. We modeled the differentiation
120 of cells in the mammalian central nervous system with a minimal regulatory network involving 12
genes through a set of linear stochastic differential equations (SDEs) based on (Qiu et al., 2012)
(See Eq. 1 in Methods) and generated simulated measurements (Fig 1C). Because real
biological systems typically include both linear and nonlinear regulatory relationships, we also
altered the system of differential equations that drive our hypothetical CNS differentiation
125 system to add non-linear effects (Fig 1D). We then provided these measurements as input to
Scribe and compared the accuracy of the resulting network to both GC and CCM (Methods).
Scribe accurately recovered the causal interactions of the true network, with an Area Under
Curve (AUC) score of the Receiver Operating Characteristic (ROC) curve of 0.98, while both GC
and CCM inferred less accurate networks (AUC 0.84 and 0.69, respectively) (Fig 1C,
130  Supplementary Figure 1B). The performance gap between Scribe and the other methods was
maintained in the presence of increasing intrinsic noise (Fig 1D, Supplementary Figure 1B). In
addition, we benchmark with other algorithms reported for the DREAM challenge (Hill et al.,
2016), which comprises of time-series data and find Scribe performs similarly to the reported top
algorithms (cRDI AUC: 0.69 while the AUC for the top three methods from DREAM challenge
135  are 0.735, 0.6807, 0.672).
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Figure 1: Scribe, a toolkit for inferring and visualizing causal regulations. (A). Scribe
detects causality from four types of single cell measurement (“pseudotime”, “live-image”,
“‘RNA-velocity” and “real-time”) datasets with a novel information metric, restricted directed
information (RDI). For a putative regulator-target pair, the current state of the target (:) receives
information from the regulator’s previous expression dynamics (z:-q¢) along a time-series
trajectory while also having memory of its own intermediate previous state (¥:-1). Scribe relies
on RDI(Rahimzamani and Kannan, 2016) to quantify the information transferred from the
potential regulator to the target under some time delay while conditioned over its past on this
pseudotime-series data. A gene often has strong memory to its intermediate previous state (
y¢—1) but RDI will only give highly positive causality score from the putative regulator to target in
cases where there still is strong relationship between regulator’s history and target’s present
conditioning on target’s history (Case 1 vs. Case 2). (B) From pairwise RDI scores, Scribe
assembles, refines, and prunes a directed regulatory network. Scribe also incorporates a
visualization framework to visualize the response function, causal interaction as well as
combinatorial regulation between gene pairs. (C) Receiver Operating Curves or ROC for Scribe,
CCM and GC on a linear system. Standard deviation (s.d.) of independent additive noise
injected to each gene at each time point and propagate through this system (intrinsic noise) is
set to be 0.01. (D) Area Under Curve (AUC) for Scribe, CCM and GC on the non-linear
neurogenesis system under different s.d. of intrinsic independent additive noise. See Methods
on details of the simulation setup. Note that for panels C/D, . for RDI represents the number of
genes to be conditioned for removing indirect causal interactions which is necessary to recover
the true causal graph (Rahimzamani and Kannan 2016).

Scribe visualizes causal regulation and combinatorial regulatory logic
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Having confirmed that Scribe is able to recover correct networks, we sought ways of visualizing

160 causality scores to aid in hypothesis generation and guide downstream validation experiments.
Furthermore, in some experiments, a regulatory network may be known and the problem of
interest will to detect which portions of the network are active (Krishnaswamy et al., 2014). We
therefore designed several novel ways to visualize causal regulations between a putative
regulatory gene x (or multiple regulators) and a target gene v (Fig 2, Supplementary Figure

165  2). First, Scribe plots the expected expression of the target E[Y (¢)] against its immediate past
Y (t—1) and the expression of the regulator in the recent past X (¢ —d) (Fig 2B). For example,
in our simulated network, Mash1 represses Hesb:

dx[Hes5] _ xp , [Pax6]
dt - 142}, [Pax6]+z]_,[Mashl

— k- xi—1[Hes5| + £(t)

Scribe shows the relationship between these two genes to follow a pattern reminiscent of
threshold inhibition (Fig 2B,C).

170 In our hypothetical system, Tuj7 is regulated by Brn2, Zic1, and Myt1l as described by the
following ordinary differential equation:

dz[Tujl] z?  [Brn2]4+z? | [Zicl]+z? | [MytlL] .
& = % Trop [Bragrar Ziesar g — F - Te-1[Tujl] + £(1)

Scribe’s visualizations revealed the sigmoid activation relationship between Brn2 and Tuj1 (Fig
2B, C). Scribe also includes a second type of visualization, showing the time-delayed response
function of a target to a regulator (Supplementary Figure 2B).

175 Most genes are regulated by more than one upstream factor and many regulatory relationships
are indirect, so we developed a third and novel visualization method that helps distinguish direct
and indirect regulations and dissect combinatorial regulatory logic between sets of genes.
Scribe renders the expected expression of a target conditional on the space of possible
expression values of two upstream regulators at some point in the recent past (Fig 2D). For

180 example, Scribe shows that Tuj1 varies over a simple linear gradient of the cumulative levels of
Brn2 and Zic1, consistent with their direct, additive role on Tuj7 levels in equation 1 above. In
contrast, Zic1 depends directly on Mash1 and indirectly on Hesb5. Scribe’s visualization of Zic1
expression conditional on past values of Mash1 and Hes5b reveals very modest dependence on
Hesb5, but strong dependence on Mash1 expression. These examples show that in principle,

185 Scribe’s visualizations can help reveal combinatorial regulation logic and distinguish direct,
causal regulatory interactions from indirect ones.
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Figure 2: Visualize gene regulations with Scribe. (A) The subnetwork of regulatory
interactions visualized by Scribe in panels B-D. See Supplementary Figure 2A for the full
network. (B) A causality visualization reveals the information transfer from one gene to another.
The horizontal axis corresponds to the regulator’s previous expression with a time lag ¢ while
the vertical axis corresponds to the target gene’s very recent past expression. The heatmap
color scale corresponds to the expectation of the target gene’s current expression given the
target’s its very recent past and the putative regulator expression with a time lag ¢, or
E[Y(®)|Y(t—1),X(t—d)]. (C) Scatterplots describing relationships of gene regulatory
interactions with time delay. (D) A combinatorial regulation visualization reveals the
combinatorial gene regulation from two regulators to a target gene. X-axis corresponds to the
regulator’'s previous expression with a time lag di while y-axis corresponds to another
regulator’s gene expression with another time lag d2. The heatmap corresponds to the expected
value of the target gene’s current expression given both of the regulators’ expressions with the
time lags (d1 or dz2) or E[Y ()| X (¢t — d1), X(t — d2)]. For this simulation, all the time delays ¢, d1
or d2 are set to be 1.

We next used these three visualizations to systematically examine all pairs of interactions
between genes in the hypothetical network, which revealed them to be consistent with our prior
characterization (Supplementary Figure 2; c.f. Fig SI5A from (Qiu et al., 2012)). We also
systematically tested various regulatory network “motifs” of genes to confirm that these
visualizations correctly reveal the causal regulatory relations between them (Figure 3).
Together, these analyses demonstrate that Scribe not only can recover causal regulatory
interactions between genes, but also provides the user with tools to explore gene interactions in
great detail, facilitating the design of follow up experiments.
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Figure 3: Visualizing pairwise interactions from robust two-gene network motifs and
combinatorial regulations from common two-input logic gates with Scribe. (A) Visualizing
response and causality for two-gene network motifs. Top: robust network motifs from (Ma et al.,
2009); middle: corresponding response visualization plots, similar to the DREVI plot reported in
(Krishnaswamy et al., 2014) with the difference that we explicitly consider the time-delayed
response from the target to the regulator (£ (%|z:-d)) (see methods for more details); bottom:
corresponding causality visualization plots. The first node in the motif plot corresponds to the
source (x-axis) while the second the target (y-axis). (B) Visualizing combinatorial regulation for
six two-input logic gates (OR, AND, XOR, XNOR, NOR and NAND).

Causal network inference of C. elegans’ early embryogenesis with “live-imaging”

In order to assess the performance of Scribe in practice, we examined Caenorhabditis elegans’
early embryogenesis, where live-imaging has been used to measure nearly half of all
transcription factors’ protein expression dynamics in every single cell in an embryo (Murray et
al., 2012). This dataset consists of 265 time series that each track the expression dynamics of a
transcription factor using fluorescent reporter constructs. Measurements were collected at one
minute intervals in every cell of the developing embryo for the first ~350 minutes of
embryogenesis (Fig 4A).

We tested whether Scribe was able to learn validated genetic interactions that govern worm
development. For example, in the intestinal cell lineage Ealap the transcription factors end-1
and end-3 were upregulated prior to their targets elt-2 and elt-7 (Fig 4B), and well before most
other upregulated factors in this lineage (Fig 4C). We then ran Scribe on these four genes to
determine whether it could correctly infer the causal regulatory interactions between them.
Although Scribe captured some known causal interactions among the core transcription factors
that specify this lineage (Owraghi et al., 2010), it also reported both false positive and false
negative interactions. For example, Scribe reports that end-1 strongly regulates end-3 (Fig 4D).
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235  Although accurate network inference surely depends on many factors, we hypothesized that the
false positives and false negatives in the live imaging analysis were mainly due to the inability of
the system to report measurements for more than one gene in the same individual cells.
Because each reporter strain tracks a different gene (in a different animal), fluctuations in
expression levels of a regulator are not “coupled” to corresponding fluctuations in its targets.

A 1. Live imaging (per minute) B C D
. Time _ —end-1 —elt-2 E Source
YA A ) 3. Spatialtemporal —end-3  elt-7 — ~— Expression ond_g Causality
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240  Fig 4: Living imaging dataset of C. elegans’ early embryogenesis captures transcription
expression dynamics hierarchy. (A) Scheme used by Murray et al for measuring transcription
factors protein expression dynamics in real-time for every cell during early C. elegans
embryogenesis. Protein-RFP fusions reporters are used to measure transcription factor protein
expression levels with 3D live imaging every minute in each cell while a ubiquitous histone-GFP

245 marker is used to trace the C. elegans cell lineage. Reporter fluorescence data was then
mapped onto the invariant cell lineage. Combining expression measures in each corresponding
cell from each embryo yields a tensor with dimensions of 265 genes X 550 time points X 1365
(in total more than 180,000 data points, after removing those with invalid measurements). (B)
Single cell lineage-resolved fluorescence data captures temporal dynamics of E lineage master

250  regulators during C. elegans embryogenesis. The expression for each gene is scaled to be
between 0 and 1 and then smoothed using LOESS regression. (C) Expression dynamics for 265
report TFs along the lineage leading to the Ealap cell. The entire developmental lineage from
the first E cell all the way to the Ealap cell in each embryo for each TF reporter is used to make
the heatmap. The raw fluorescence intensity is scaled to be between 0 and 1 and then

255  smoothed using LOESS regression. The order of genes in each row is calculated as previously
described (Pliner et al., 2017). (D) Scribe reconstructs the causal regulatory network for the four
master regulators (end-1/3, elt-2/7).

Accurate causal network inference requires temporally coupled expression data

Next, we explored Scribe’s ability to recover causal interactions using single-cell RNA-seq
260  which in contrast to live-imaging measures many genes in each cell. We first collected publically
available datasets from several biological systems including developing airway epithelium
(Treutlein et al., 2014), dendritic cell response to antigen stimulation (Shalek et al., 2014), and
myelopoiesis (Olsson et al., 2016). We then pseudo-temporally ordered these cells as
previously described using Monocle 2 (Qiu et al.,, 2017a). Next, we ran Scribe on these

8
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265  pseudotime series (Fig 5, Supplementary Figures 3, 4, 5) and examined the regulatory
interactions reported for known transcriptional regulators of these systems. For each gene, we
summed the causal interaction scores to all other genes, deriving a measure of its aggregate
influence on the system. Reassuringly, these aggregate causality scores were significantly
higher for known transcriptional regulators than for genes believed to be targets by the authors

270  of the original studies (Fig 5). Moreover, Scribe identified several regulatory interactions, such
as Gata1-Gfi1-Klf4, which are known to play an important role in myeolopoeisis (Laslo et al.,
2006; Stopka et al., 2005; Tamura et al., 2015) Supplementary Figure 5l). In recovering known
regulatory interactions in each system, Scribe marginally outperformed GC and CCM but all
three methods generally performed poorly, with no method reaching an AUC of greater than 0.7

275  (Supplementary Figure 5).
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Figure 5: Scribe correctly reveals the ordering of the sum of outgoing RDI for a variety of
single-cell RNA-seq datasets. In order to demonstrate Scribe’s power in detecting the
direction of causal regulation, we test the hypothesis that the sum of outgoing edges’ causality
score should be higher in groups of potential regulators than in their targets on three different

280  datasets: lung (Treutlein et al., 2014), LPS (Shalek et al., 2014) and myelopoeisis (Olsson et al.,
2016). (A) Total outgoing causality scores of the putative regulators is higher compared to that
of the target genes across AT1 or AT2 branch. (B) Same as in panel A but for the LPS data
(only wild-type cells are chosen from this dataset to avoid testing on disrupted LPS response
network in the knockout cells). (C) The master regulators have the highest total outgoing

285 causality scores compared to the putative direct targets (transcription factors) and then the
putative secondary targets (downstream targets). To obtain total outgoing causal scores, causal
scores between all gene pairs are calculated with RDI and then processed by the CLR
algorithm, followed by summing up all outgoing edges’ scores for each gene. Integers (N) above
each boxplot corresponds to the number of genes used for creating the plot. An unpaired

290  two-sample t-test is used to test each pair of hierarchical groups of genes. Only pairs of genes
detected as significantly different (p < 0.05), which also happen to include larger number of
genes, are labelled.

We hypothesized that as with live imaging datasets, lack of coupling between the expression
measurements in pseudo-temporally ordered single-cell RNA-seq data leads to poor accuracy
295 during regulatory network inference. Although single-cell RNA-seq measures many genes, each
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cell is sampled (destructively) only once. In contrast to true time series in which an individual
cell is followed and measured longitudinally, in pseudo-temporal datasets, each expression
measurement comes from a different cell. Therefore, the gene expression fluctuations of a
regulator do not propagate to its target at some later point in pseudotime.

300  To test whether causal network inference requires temporal coupling between genes across
measurements, we ran Scribe on simulated data collected using four strategies for obtaining
longitudinal measurements from individual cells. First, we consider “real-time”, an ideal
theoretical technology in which all genes are tracked in each individual cell as that cell
differentiates. Current single-cell techniques are limited either to the measurement of just a

305  handful of genes over time (e.g. live imaging of fluorescent reporters), or require destroying the
cell to collect data (e.g. sc-RNA-seq). We therefore consider a second setting “live-imaging”, in
which each cell is tracked over time but only one gene is measured. Third, we examine
pseudotime, where all genes are measured only once in distinct cells that have been sampled
from a population undergoing differentiation. Finally, we tested Scribe on RNA velocity data,

310  which consists of a snapshot measurement of each cell’'s current transcriptome along with a
prediction of that same cell’'s expression levels at a short time in the future (Fig 6A).

Using pseudo-temporal measurements, Granger causality, convergent cross mapping, and
Scribe all performed very poorly in recovering direct, causal interactions between genes in the
hypothetical network (Fig 6B, Supplementary Figure 6A). The inability of these methods to

315  recover regulatory interactions is unlikely to be due to undersampling of the system, as
performance was insensitive to varying the number of cells captured in the simulated datasets
(Fig 6C, Supplementary Figure 6B). Performance of the three methods was only modestly
better when using data captured by “live imaging”, in which one gene is followed in each cell
over time, but no two genes are ever measured in the same individual cells.

320  We next evaluated two alternative modes of measuring gene expression dynamics in single
cells in which fluctuations are coupled. Using conditional Restricted Directed Information, Scribe
produced highly accurate reconstructions from “real time” measurements of gene expression
(AUC: 0.859 £ 0.0283), in which every gene is measured repeatedly in a set of cells as they
differentiate. This demonstrates that when measurements are fully coupled across time, and

325  fluctuations in a regulator can propagate to its targets, restricted directed information correctly
reveals causal regulatory interactions. RNA-velocity offers the ability to perform causal inference
via RDI based on two data points from the same cell (Fig 6A). Encouragingly, Scribe also
recovered accurate networks (AUC: 0.837 = 0.0189) with “RNA velocity” measurements.
Although RNA velocity does not repeatedly measure cells, it provides a “prediction” of the future

330  expression levels of each gene based on comparing mature to immature transcript levels, in
effect introducing a form of temporal coupling to the data. These simulations show that methods
for regulatory inference based on information transfer fail using data from measurement
modalities in which fluctuation of a regulator’'s expression across cells is “uncoupled” from
fluctuations in it’s targets.
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Figure 6. Temporally coupled gene expression measurements are necessary for inferring
causal regulatory interactions. Four possible types of single-cell time-series datasets,
pseudotime (no dynamics coupling across genes and time-points), live-imaging (dynamics
coupled for each gene across time-points but not across genes), “RNA-velocity” (dynamics
coupled for all gene between two time points measured in each cell) and real-time (dynamics
coupled for all gene across all time-points in each cell), are simulated (see Methods for details).
(A) Incorporating RNA velocity analysis into Scribe for causal inference. A gene with multiple
exons (pink box, E) and introns (blue line, /) is transcribed into immature RNA and then spliced
into mature RNA, both of which can be quantified by scRNA-seq. See Methods section
Benchmarking Scribe with alternative algorithms on inferring causal regulatory
network. (B) Dynamics coupling in real time and “RNA velocity” datasets enables Scribe to
correctly infer causal regulatory network. Scribe (including four variants, RDI (¥ = 0), uRDI (
k=0), RDI (x=1)and uRDI (x = 1)) and two alternative causal inference methods, Granger
and CCM are used to reconstruct network based on 2,000 data points from each of the four
different single-cell time-series datasets. The results from each method are then compared with
the known network architecture to obtain the AUC score. Five replicates are performed for each
methods. (C) Dependence of causal inference on the number of samples. The same analysis as
in A is performed but with downsampled datasets on a sequence from 200 to 2000, incremented
by 200, data points (see Methods for more details). RDI: restricted directed information. uRDI:
uniform RDI which replaces the biased data distribution with a uniform distribution to remove the
dependence of the sample distribution.

Causal network inference with “RNA-velocity” reveals regulatory interactions that drive
chromaffin cell differentiation
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We next sought to test whether Scribe could recover causal network interactions using real RNA
velocity measurements. Recently, La Manno and colleagues applied RNA-velocity to study the

360 chromaffin cells differentiation as well as their associated cell cycle dynamics (La Manno et al.,
2018). We used this chromaffin dataset as a proof-of-principle for incorporating “RNA velocity”
into Scribe. We first reconstructed a developmental trajectory from mature mRNA expression
levels from each cell in this dataset and then applied BEAM (Qiu et al., 2017b) to identify genes
that significantly bifurcate between Schwann and chromaffin cell branches (Fig 4B).

365 Reassuringly, these genes were enriched in processes related to neuron differentiation along
the path from SCPs (Schwann Cell Progenitors) to mature chromaffin cells (Supplementary
Figure 7A).

We then applied Scribe to the RNA velocity measurements from the 3,665 significantly
branch-dependent genes (qval < 0.01, Benjamini-Hochberg correction) (Figure 4C,
370  Supplementary Figure 7). We first built a network between significant branching transcription
factors (TFs) as well as from TFs to the significant targets in chromaffin lineage and found that
only 0.75% of TFs interact with each other while 8.40% TFs regulate potential targets (causality
score > 0.05) (Supplementary Figure 7D). We then inferred a core network between fourteen
TFs believed to drive chromaffin cell differentiation (Furlan et al., 2017). Within this core
375  network, Scribe identified two feed-forward loop (FFL) motifs (Alon, 2007): Eya1-Phox2a-Erbb3
and Gata3-Phox2a-Notch1 (Fig 7C-E). The STRING database of genetic and molecular
interactions (Szklarczyk et al., 2017) provided additional support for these regulatory motifs
(Supplementary Figure 7D). These network motifs were not found by Scribe when run on
pseudo-temporally ordered, mature mRNA measurements alone (data not shown).
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380  Fig 7: Causal inference in Scribe with RNA-velocity. (A) RNA-velocity vector projected onto
the first two latent dimensions. A small subset of arrows are used to visualize the velocity field of
the cells. S: Sympathoblasts; C: Chromaffin. SCP: Schwann Cell Progenitor. The color of each
cell corresponds to the cluster id from Fig 5B of ref. (Furlan et al., 2017). Only the exon values
from RNA-velocity framework are used to reconstruct the developmental trajectory. All 384 cells

385 used in (La Manno et al., 2018) are used (same as below). (B) A core causal network for
chromaffin cell commitment inferred based on RNA-velocity. Gene set is collected from ref.
(Furlan et al., 2017). CLR (context likelihood of relatedness) is used to remove spurious causal
edges (quantified with Z(z+ ¥:+119¢)) in the network (see methods). Network is layouted as an
arc-plot where all the genes are ordered on a line, sorted by the hub centrality score (see

390  Methods) decreasing from left to right. The edges above (below) the line indicate the
interactions from the left (right) genes to the right (left). The width of the edge corresponds to the
normalized causality score returned after applying CLR on RDI values. Genes are labeled below
the horizontal line. (C) Two potential coherent FFL (feed-forward loop) motifs of chromaffin
differentiation are discovered from the core network. Edge width corresponds to causal

395  regulation strength. (D) Visualization of the six causal regulations pairs in the feedforward loops
of Eya1-Phox2a-Erbb3 and Gata3-Phox2a-Notch1. Current mature mRNA and predicted future
MRNA estimated from “RNA velocity” analysis framework are used as input and smoothed using
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as a local average. Expected values are then rasterized to plot as a two-dimensional heatmap
(See methods for details). (E) Visualizing combinatorial regulation logic for the two feedforward

400  loops in Panel C with Scribe. For both Panels D and E, a grid with 625 cells (25 on each
dimension) is used. Similarly, expectation values are scaled by the maximum to obtain a range
from 0 to 1.

Discussion

Causal gene regulatory network inference requires a large volume of data and is vastly easier in
405  the context of time series experiments. Single-cell RNA-seq experiments can produce
thousands of observations which when pseudo-temporally ordered reveal gene expression
dynamics at extraordinarily high resolution. The technology has understandably sparked
renewed interest in network inference algorithm development. Recently, methods to leverage
single-cell data for network inference based on mutual information and pseudotime ordering
410 have been reported (Chan et al., 2017; Hamey et al., 2017; Huynh-Thu et al., 2010; Matsumoto
et al., 2017; Ocone et al., 2015; Papili Gao et al., 2017; Sanchez-Castillo et al., 2017; Wei et al.,
2017); however, most of those methods only report statistical dependence (Chan et al., 2017;
Huynh-Thu et al., 2010; Papili Gao et al., 2017; Sanchez-Castillo et al., 2017), and as shown by
Matsumoto et al, many return networks only slightly more accurate than random guessing
415 (Matsumoto et al., 2017). Despite extensive research into gene regulatory network inference
over the past several decades, the fundamental source of poor performance by these methods
on single-cell data remains uncertain. One possibility is that, even with the tremendous gains in
throughput acheived by developers of single-cell RNA-seq technology over the past decade
(Svensson and Vento-Tormo, 2017), these methods still haven’t been provided with enough
420  data to accurately reconstruct networks. Alternatively, the basic approach of inferring genetic
interactions based on statistical interactions between their measured expression levels may be
fundamentally limited.

We developed Scribe, which uses recently reported advances in information theory to infer
complex casual regulatory interactions between genes. Scribe employs Restricted Directed

425 Information (RDI), overcoming limitations inherent to Granger Causality (GC) and Convergent
Cross Mapping (CCM). Scribe also provides several ways to visualize causal information
transfer, helping users distinguish between direct and indirect interactions and unravel
combinatorial regulatory logic.

Although Scribe correctly infers causal regulatory interactions in simulated measurements that
430  track all genes in an individual cell over time, it performs poorly on live imaging or
pseudo-temporally ordered single-cell datasets. We demonstrate that poor performance is due
to the loss of temporal coupling between measurements of genes that interact, in which
fluctuations in levels of a regulator propagate to measurements of its targets. This may explain
poor performance by a broad class of information theoretic or statistical approaches for inferring
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435 regulatory networks from single-cell RNA-seq data. If so, then simply improving the throughput
of single-cell RNA-seq protocols will not be sufficient to power inference methods.

Improvements to single-cell expression assays that produce measurements for multiple genes
that are coupled across time may enabled accurate regulatory network inference using Scribe or
similar approaches. Although methods for nondestructively tracking expression levels of many

440  genes in single cells over time have not been described, several assays have been reported
that provide snapshot estimates of both steady state mMRNA levels along with their rates of
synthesis. These assays report measurements of the current and future transcriptome of
individual cells, essentially providing temporal coupling over a short time horizon. For example,
SLAM-seq (Herzog et al., 2017; Muhar et al., 2018) or TUC-seq (Riml et al., 2017) assay mature

445 RNA levels and estimate the rate of their synthesis via nucleotide labeling or conversion based
approaches. Sequential, multiplex RNA FISH or “Seq-FISH” (Shah et al., 2018), probes both
exons and introns of RNAs can also provide similar measurements. RNA velocity, which
analyzes single-cell RNA-seq reads falling within introns, estimates both mature mRNA levels
and their immature intermediates to predict the transcriptome a short time in the future, also

450  generates coupled measurements. Accordingly, using RNA velocity measurements greatly
improves Scribe’s accuracy compared running it on pseudo-temporal single-cell RNA-seq
measurements.

Gene regulatory network inference from observational measurements of gene expression is
widely regarded as amongst the most difficult problems in computational biology. Single-cell

455 RNA-seq holds great promise for powering various algorithms for network inference, but as we
have shown, major obstacles remain to doing so in practice. When provided with temporally
coupled measurements, Scribe accurately reconstructs networks of modest scale. As
experimental and computational improvements to single-cell expression techniques couple
measurements across time, we expect Scribe to be increasingly capable in dissecting the

460 complex genetic circuits that drive development and disease.

Code availability. A version of Scribe (version: 0.99) used in this study is provided as
Supplementary Software. The newest Scribe implemented as an R package is available through
GitHub (https://github.com/cole-trapnell-lab/Scribe). CCM algorithm is implemented as the rccm
package (https://github.com/cole-trapnell-lab/rccm) which is based on

465  https://github.com/cjbayesian/rccm. The neurogenesis simulation is implemented as the
scRNASeqSim package (https://github.com/cole-trapnell-lab/scRNASegSim). Supplementary
Software also includes a helper package containing helper functions as well as all analysis code
that can be used to reproduce all figures and data in this study.

Data availability. Four public scRNA-seq data sets are used in this study. Lung dataset:

470  GSE52583 (Treutlein et al., 2014); LPS dataset: (GSE41265); MARS-seq dataset(Paul et al.,
2015) : http://compgenomics.weizmann.ac.il/tanay/?page id=649. Olsson dataset(Olsson et al.,
2016): synapse id syn4975060. Live imaging dataset for the C. elegans is obtained from
Waterston lab.
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Supplementary Figure 1: Scribe recovers causal interactions at rare transition states and
generalizes to various types of single-cell time-series measurements. (A). Scribe
leverages a rigorous technique of uniformalization to detect potential causality. Cells often
reside in the steady states but rarely in the transition state. This leads to heavier sampling of
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single-cell measurements in steady states (for example, the low or high expression regions at
the beginning or end of the kinetic curves as shown in panel A) than transition state. More
intuitively, the biased sampling in data can be seen from the state space formed with the
expression values of the regulator, target and target’s history (/I. Heavy sampling in steady
states). In order to account for sampling biases from single-cell measures, Scribe integrates
uRDI/ucRDI (uniformization of (c)RDI) by reweighting each cell and thus replacing the biased
sampling distribution with a uniform distribution (/I. Uniformalization) to rigorously quantify the
potential causality (Rahimzamani and Kannan, 2017) (how much influence a regulator can
potentially exert on target without cognizance to the regulator’s distribution). For a strong causal
interaction, RDI requires the response of the target (see more details in Fig 1A) to the regulator
evolves substantially under different historical states of the target (//l. Potential causality). (B).
uRDI improves the recovery of causal regulations. Left: Receiver Operating Curves or ROC for
different methods in Scribe on causal inference with or without uniformalization for the linear
system. Right: Area Under Curve or AUC for different methods in Scribe on causal inference
with or without uniformalization for the non-linear neurogenesis system. Noise for each system
is treated as the same in the Main Figure 1C. (C). Scribe is generally applicable on any
single-cell time-series datasets. Each column in the table corresponds to different types of
time-series data. The first column corresponds to theoretically ideal real time-series datasets,
where, i.e., the transcriptome for each cell is followed over time longitudinally. The second
column corresponds to the pseudotime-series datasets, where the transcriptome for a
population of cells at different developmental stages is captured with scRNA-seq. Using
computational algorithms, for example, Monocle 2, cells are ordered to obtain
pseudotime-series data. The third column corresponds to the datasets estimated from the “RNA
velocity” analysis framework where the current or future mature mRNA expression, etc are
estimated for each cell. In the first three columns, each axis corresponds to one gene dimension
where each curve corresponds to the expression dynamics for each individual cells in the full
gene space over time. The arrow points to the direction of cell differentiation and the dash line
from the second figure corresponds to the inferred pseudotime trajectory. For the last column,
“live-imaging” dataset, in which each cell is tracked over time but only one gene is measured, as
we did for studying the C. elegans early embryogenesis.
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Supplementary Figure 2: A gallery of regulatory patterns visualized by the response,
causality and combinatorial regulation visualizations from Scribe on the simulated
neurogenesis dataset. (A) The manually curated network used to simulate the three-way cell
fate specification of the central nervous system (Qiu et al., 2012). The network consists of two
key mutual-inhibition gene pairs. Initializing this network with small amounts of stochastic noise
and following expression kinetics over time simulates the trajectory followed by a single cell
leading to the fate of either neuron, astrocyte or oligodendrocyte. For simplicity, only a
simulation leading to the neuron fate is used for the analysis presented in panels B-D. (B)
Response visualization plots for all the interacting genes pairs in the network. Response
visualization reveals the regulatory response of the target to the regulator. X-axis corresponds to
the regulator’s previous expression with a time lag ¢ (z:-4) while y-axis corresponds to target’s
current expression (¥:). For example, as shown here, response of Brn2 to Tuj1 is a sigmoid
function suggesting positive regulation while the response of Mash1 to Hes5 is a threshold
function suggesting threshold mutual repression. The heatmap corresponds to the rescaled
normalized conditional density for two genes, similar to the DREVI plot from ref.(Krishnaswamy
et al., 2014) with the difference that we explicitly consider the time-delayed response from the
target to the regulator (£ (:/z:—a)). The red line represents the most probable value for the
target given a regulator’s expression. The rug plot on the axis corresponds to the density of cells
at a particular value on the corresponding dimension. (C) Causality visualization plots for all
interacting genes pairs in the network. (D) Combinatorial logic visualization plots for all six
two-input combinatorial regulations cases in the network.
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Supplementary Figure 3: Poor performance of other causal inference algorithms in
resolving gene regulatory directionality. To test whether or not other well-known causality
detection algorithms (Granger Causality (GC) and Convergent Cross Mapping (CCM)) can also
infer the correct regulatory directionality, we calculated the total outgoing causality scores
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inferred from them for the known regulators and targets on the same datasets as used in main
text Fig 5. (A, B) Distribution of total outgoing causality scores compared to that of the target
genes across AT1 or AT2 branch based on GC (A, left) or CCM (B, right). (C, D) the same as in

730 (A, B) but for the LPS data (wild-type cell subset). (E, F) The same as in (A, B) but across
granulocyte and monocyte branches of the Olsson dataset (wild-type cell subset). To calculate
total causality score, causal strength between all the genes are calculated with RDI which is
then normalized with CLR algorithm.
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Supplementary Figure 4: Scribe recovers a core regulatory network responsible for
735  myelopoiesis. (A) A core network describes key regulators during the specification of
monocytes and granulocytes based on data collected from perturbation experiments, bulk
ATAC-seq and ChIP-seq data(Olsson et al.,, 2016). (B) Examples of gene-target pair kinetic
curves over pseudotime along the monocyte lineage. (C) Scribe infers the expected core
regulatory network interactions for myelopoiesis. Causal scores from regulators to all other

26


http://dx.doi.org/10.1101/426981
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Sep. 25, 2018; doi: http://dx.doi.org/10.1101/426981. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

740  genes are calculated using RDI and are then normalized using the CLR algorithm. (D)
Visualization of combinatorial gene regulation from Irf8 and Gfi1 to Zeb2 or Per3. Gene
expression values are denoised through reversed graph embedding (Qiu et al., 2017a) and
calculated as a local average. Values are then rasterized to plot as a two-dimensional heatmap
(See methods for details). (E) Normalized rank of lineage specific genes’ total outgoing RDI

745  sum. Total outgoing RDI sum is calculated for all lineage specific genes for each lineage as in
Figure 5. The normalized rank is calculated based on the order of each lineage specific TF
among all significant branching TFs divided by its total number. When the normalized rank is
close to 1, the corresponding gene is close to have the highest sum of outgoing RDI scores. The
dash line indicates the average rank (0.5) for a random gene. (F) Lineage specific network of

750 significant regulators during erythropoiesis. Edges supported by SPRING database is colored
as red lines. For panels E (F), BEAM analysis was used to identify significant branching genes
associated with the four (one) lineage bifurcation events shown in the haematopoietic trajectory
from ref. (Qiu et al., 2017a) based on the paul dataset (Paul et al., 2015). The top 1,000
differentially expressed genes associated with each bifurcation were chosen to build a causal

755  network for each relevant lineage. A set of TFs relevant to specific lineages described
previously are used for panel E or F. Neu: Neutrophil; Ery: Erythroid, Mk: Megakaryocyte; Mono:
Monocyte; DC: Dendritic Cell; BE: Basophil / Eosinophil.
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Supplementary Figure 5: Benchmark Scribe with other leading causality detection
algorithms. (A, E) Receiver Operating Curves or ROC (A, top) and Area Under Curve or AUC
760  (E, bottom) of the inferred causal network based on Scribe, GC and CCM on the Dendritic Cells
(DC) dataset. Four different variants of causal inference implemented in Scribe are tested: RDI/
(L = 0): the default RDI method without conditioning on any other gene; RDI/ (L = 1): the RDI
method based on conditioning on the incoming gene with highest causality score, except the
current target; uRDI: the method based on the uniformization technique applied on the actual
765  distribution in RDI; uRDI (L = 1): the uRDI method but also with the conditioning on the incoming
gene with the highest causality score, except the current target. The network from(Amit et al.,
2009) based on a unbiased perturbation experiment is used as benchmark gold-standard. (B, F)
The same as in (A, E) but for the granulocyte branch of the Olsson dataset. (C, G) The same as
in (A, E) but for the monocyte branch of the Olsson dataset. The manually curated network for
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770  the myeloid differentiation from (Su et al., 2017) is used as the benchmark gold-standard. (D, H)
The same as in (A, E) but for the erythroid branch of the Paul dataset. All wild-type cells are
pooled to reconstruct the developmental trajectory and a subset of CMP and erythroid branch
cells are used to estimate the causal network for the erythroid branch. The manually curated
network for the erythroid differentiation from Ref. (Swiers et al., 2006) is used as benchmark

775  gold-standard. (I) The network of the gene-set as included in the panel (Supplementary Figure
4F) retrieved from the STRING database. See
https://string-db.org/cgi/network.pl?taskld=20Goh9uvYIdY for more details.
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Supplementary Figure 6: Benchmark different causal inference methods with different
types of single-cell time-series datasets and under different nhumber of replicates of
780  developmental trajectories. (A) Dynamics coupling in real time and “RNA velocity” datasets
enables Scribe to correctly infer causal regulatory network. Scribe (including four variants, RDI (
k=0), uRDI (k=0), RDI (k=1) and uRDI (x=1)) and two alternative causal inference
methods, Granger and CCM are used to reconstruct network based on 2,000 data points from
each of the four different single-cell time-series datasets. The results from each method are then
785  compared with the known network architecture to obtain the AUC score. The data generated
with time delay between any regulator to any target ranges from 1 to 3. (B) The same analysis
as in main text Fig 6C is performed but downsampling datasets in terms of the number of
replicates of developmental trajectories (see Methods for more details). The top panel
corresponds to the data generated with time delay between any regulator to any target as 1
790  while the bottom panel with time delay for different regulators ranging from 1 to 3.
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Supplementary Figure 7: Comparing causal inference based on pseudotime or
RNA-velocity. (A) Clusters of significant branching genes reveal distinct transcriptional
programs between Schwann and chromaffin cell lineages. (B) Gene expression dynamics of
representative significant branching transcription factors from (A). (C) Top 100 causal edges
between significant branching transcription factors (TFs) as well as from TFs to the potential
targets in chromaffin lineage inferred with RNA-velocity. (D) The network of the gene-set as
included in the Fig 7C retrieved from the STRING database. For more details, please see
https://string-db.org/cgi/network.pl?taskld=d3PMC9KwRuep.
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Methods

800
Four possible single-cell time-series measurement modalities

Cell differentiation is an intrinsically noisy and asynchronous process. Even for the same
developmental process, every cell in any given time should be regarded as a distinct sample.
We consider four possible types of gene expression measurements in those single-cell samples:
1. Real-time, where we measure the gene expression for all genes simultaneously in a
805 single cell over time. This is the ideal situation but no existing technology can produce
data like this yet.

2. “RNA-velocity” where we only capture the current state and the next state for all genes in
different cells. “RNA-velocity” can be computationally inferred from single-cell RNA-seq
datasets, or directly measured with Seq-FISH(Shah et al., 2018), and possibly single-cell

810 version of SLAM-seq (Herzog et al., 2017; Muhar et al., 2018) , TUC-seq (Riml et al.,
2017) and TimeLapse-seq (Schofield et al., 2018), among others.

3. Live-imaging datasets are those generated with multiple separate live-imagings for a
single protein in a single-cell which are then aligned along the same developmental
process to form a time-series for all genes.

815 4. Pseudotime is where we apply trajectory reconstruction algorithm to order the single-cell
RNA-seq shapshot dataset to form a time-series.

The problem of causal regulatory network inference

In this work, we formulate the problem of causal regulatory network inference as the inference of
the underlying structure of influences in a stochastic dynamical system where the time series of

820 each gene is causally regulated by a subset of other genes. We assume that there are no
unobserved confounders in order to make the problem tractable. In this setting, we can
potentially infer the causal regulators based on estimating the amount of information transferred
from one variable (a potential regulator) to another time-delayed response variable (a potential
target). In the context of single cell genomics (e.g. scRNA-seq, live cell imaging), we ask how

825  we can reconstruct a regulatory network consisting of causal regulations that accurately
describe the gene expression dynamics and the associated cell fate transitions.

Causal Inference

In the setting stated above, various techniques, including Granger Causality and CCM, each
associated with different assumptions have been proposed to detect the structure of the causal

830  regulatory network. In the following, we briefly summarize these methods and introduce RDI, the
method we developed and used in this study.

30


http://dx.doi.org/10.1101/426981
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Sep. 25, 2018; doi: http://dx.doi.org/10.1101/426981. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Granger causality

In order to determine whether one time series (X1) is useful in forecasting another (X2) in

economics, Clive Granger first proposed Granger Causality (GC) in 1969 (Granger, 1969).
835  According to GC, if X1 "Granger causes" X2, then the predictability of X2 based on past values

of X2 and Xi together is significantly greater than that of predicting purely based on the past

values of X2. GC in its original formulation, however, is only able to detect linear causal

regulation: i.e., when the regulators regulate the target through a linear relationship.

Convergent Cross Mapping

840 In order to detect pairwise non-linear interactions in deterministic ecology systems, George
Sugihara and colleagues proposed Convergent Cross Mapping (CCM) which is based on
state-space reconstruction (Sugihara et al.,, 2012). One fundamental and somewhat
counterintuitive idea of CCM, distinct from GC, is that it is possible to estimate X1 from X2, but
not the other way if causation is from X1 to X2. CCM first constructs shadow manifolds x.

845 and Mx, from lagged coordinates of the time-series X2 and Xi. It then tests whether states in
the shadow manifold Mx. can be used for estimating the states in Mx, and vice versa via
mapping through nearest neighbors (cross mapping). Another key idea of CCM is convergence
which means that as the length of the time-series increases, the shadow manifolds become
denser and the ellipsoid or space formed by nearest neighbors shrinks, leading to improvement

850 of cross-map estimates. Although CCM is appealing, it cannot be generalized to stochastic
systems as Takens’' theorem, the cornerstone of CCM, will break down in such scenarios
(Takens, 1981). Furthermore, CCM can only infer pairwise relationships and complex
multi-factorial interactions common in gene regulatory networks are not captured in CCM.

Restricted Directed Information (RDI)

855 As mentioned earlier, the causal inference method in Scribe is based on Restricted Directed
Information (RDI). This measure determines the amount of statistical inter-dependence (or more
formally the mutual information) between the past state of the regulator and current state of the
target gene conditioned on the target’s immediate previous state.

Cell state transitions are controlled by hierarchical regulatory networks (Peter and Davidson,

860  2011). In such networks, as the expression of regulator changes, their downstream target
responds accordingly after some time delay 4. A canonical measure of mutual dependence
which accounts for both linear and nonlinear associations between two genes (or more
generally, two random variables), X, Y, is mutual information (MI)(Cover, 2006). Ml is symmetric
and can quantify the "amount of information" obtained about gene x or v, through the other

865 gene Y or x. It essentially determines how similar the joint distribution (Pxy (#,%)) of the two
genes X,Y is to the products of factored marginal distribution Px (z)py (¥), or formally:

I(X;Y) =3, ,pxy(z,y)log %&%

If I(X;Y) is zero, then the two genes X.Y are independent; otherwise it implies there exists
some dependency between them (e.g. in the case of a regulator and its target). It is often useful
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to quantify the mutual dependence between two random variables (for example, regulator x
and target v) while removing the effect of a third random variable (for example another
regulator 7 or the history state of the target). This leads to developing of conditional mutual
information, which is defined as:

(z,yl2)
I(X5Y12) = 20y, Pxvz(2,y, 2) log pr)z)gl‘zz)pz?zz(yld

MI provides a powerful approach to quantify the symmetric interdependence between genes.
However, a favorable approach would be to measure the causal score from a potential regulator
to its target. We can achieve this by considering the time-series of regulators and targets (X*,
Y") and quantifying the information transfer from the past state(s) of x to the current state of the
variable v denoted by Y (?).

Previously, T. Schreiber reported Directed Information (DI) as a measure for the amount of
information flowing from the past state(s) of x, the regulator, to the the current state of the
variable v, the target (Schreiber, 2000). Dl is defined as:

DI(X - Y) =Y, (XL Y (@)Y

In order to remove indirect interactions, we can calculate the information transferred from the
regulator to the target while conditioning on all the other genes ({X:i, X;}°), which is,

DI(X: = XX, X;3) = S0 T (X5 X015 X e e, )

Furthermore, for a set of genes of interest, X1, X2,..., Xn, from a single-cell genomics dataset,
we can infer a Directed Information graph, Gor = (V. E)) where the vertex set V corresponds to
the genes {X1, X2,..., X~} and the edge ¢ = (Xi, X;) from gene Xi to Xj exists if and only if
DI(X; — X;|{Xi, X;}°) # 0 and the edge weight corresponds to the quantified DI value

DI(X; — X;[{Xi, X;}),

It was shown that if a system is not purely deterministic, the directed information graph Gpr
inferred from DI will correctly recover the true causal graph Gc (the network which includes all
causal interactions as directed edges) (Sun et al., 2015). Although DI is able to detect both
linear and non-linear causality as opposed to the linear Granger causality and is applicable to
stochastic systems, it (1) can not deal with deterministic systems which may be of interest for
certain scenarios and (2) poses huge computational burden because it conditions on all
possible previous states of the regulator or target and (3) requires enormous amount of data
which is not affordable even with current single-cell genomic datasets.

We recently proposed a novel formulation of DI to alleviate those issues by employing only the
immediate past of the target or regulators instead of all the past states assuming a first-order

Markov system, which is generally applicable to most biological processes. In this method, the
randomness is present due to the random initialization of the Markov system, hence creating a
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900 random process on which information measures are well defined. We term this novel method as
Restricted Directed Information (RDI) and define it as,

DIy(X - Y)=1I(X(t—d);Y()|Y(t—1))

Despite the fact that original RDI measure is defined only for the immediate past of the regulator
X, this measure can be flexibly defined for arbitrary effect delay d from X to Y as we have
done here.

905 Conditional Restricted Directed Information (cRDI): Similar to (Schreiber, 2000), RDI can also be
extended to the case where the information transfer from X to Y is conditioned on other
potential regulator(s) Z to rule out the possible indirect causal effects and confounding factors.
Thus the Conditional RDI (abbreviated as cRDI) can be formulated as:

DIy (X > Y|Z(t—do)) = I (X(t —di); Y (0)|Y (¢ — 1), Z(t — da))

In (Rahimzamani, et. al, Allerton 2016), it's shown that cRDI works in many stochastic or

910 deterministic cases and under some mild assumptions is capable of inferring the correct
regulatory network Gc. Moreover, it has shown that if the conditions are violated, no other
method will be able to recover the correct network (see Section IV. in (Rahimzamani, et. al,
Allerton 2016)).

In the upcoming sections we will discuss how RDI and cRDI are utilized in the Scribe toolkit.

915
Uniformization method for adjusting sampling bias

During our studies over the simulated benchmark data, we found that as the number of samples
increases, performance of RDI first increases and then start to decrease. This problem was
particularly acute in simulations where gene expression reached a plateau after cells committing
to a cell fate. In general, while the transitional states are of higher importance in discovery of

920 causal interactions, oversampled equilibrium states will outhumber the transitional samples
resulting in a sampling bias towards less informative equilibrium states. This phenomenon can
in turn reduce the inference accuracy, since RDI requires calculating conditional mutual
information (£(X(t — d); Y (¢)[Y'(¢t — 1))) by design, which is a function of the joint distribution (
P(Tt—a; Y1, y—1) = P(Ye|we—a, ye—1)p(zi—a, ye-1)). That is, the distribution is influential in the RDI

925  calculation, despite the fact that the RDI score should be fully determined only by the conditional
distribution. Hence we devised a scheme to correct for sampling bias by re-weighting samples
so that those from the system during transitional periods are weighted higher than cells sampled
from the system at equilibrium. One may assume the input distribution is uniform and
redistribute the observed samples in a more homogeneous fashion before calculating the RDI

930  value.

33


http://dx.doi.org/10.1101/426981
http://creativecommons.org/licenses/by/4.0/

935

940

945

950

955

960

965

bioRxiv preprint first posted online Sep. 25, 2018; doi: http://dx.doi.org/10.1101/426981. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

This bias correction scheme, which we term Uniformized conditional mutual information (UCMI)
replaces the actual distribution P(z¢—4,%:-1) with a uniform distribution “(z:-d;%-1) and then
calculates the conditional mutual information for P(¥¢|zi—d, ye—1)u(zi—a,y:-1). This is made
possible thanks to the concept of potential Conditional Mutual Information (qCMI) (Rahimzamani
and Kannan, 2017) and a novel estimator, in which the actual distribution p(Ti—a,yt—1) of
samples is replaced by any arbitrary distribution (1. %:—1) before estimating the conditional
mutual information. uCMI is thus a special case of qCMI, in which the replacement distribution
q(zi-a,y:-1) is uniform. By replacing the conditional mutual information (CMI) in RDI with uCMI,
we obtain a new way of computing information transfer called uniformized Restricted Directed
Information (uRDI).

The discussion above is especially relevant for single cell genomics datasets as single cells are
not homogeneously spread across many biological processes and they often will be heavily
sampled from steady states while rarely from transition states. A compelling discussion of this
phenomenon can be found in c.f. (Olsson et al., 2016). This imbalance of sampling confounds
the performance of RDI (or other mutual information based methods) and thus leads to
ignorance of rare but critical regulation happened during transition states. We noticed that
empirical methods have been reported to account for sampling biases from single-cell measures
(Krishnaswamy et al., 2014). However, the uRDI method incorporated in Scribe provides a
rigorous approach to replace the biased sampling distribution with a uniform distribution to
quantify potential causality (how much influence a regulator can potentially exert on target
without cognizance to the regulator’s distribution) and is thus arguably a superior approach to
account for the sampling biases issue (Rahimzamani and Kannan, 2017).

Scribe: a toolkit for visualization and detection of complex causal regulation from
single cell genomics datasets

Although Scribe is applicable to any time-series datasets, it is specifically designed for
visualizing and detecting complex gene regulation from single cell genomics datasets (e.g.
scRNA-seq). Scribe relies on (uniformized) restricted directed information to detect causality but
also supports other methods, including the well-known mutual information, Granger causality
and the more recent CCM. Scribe starts with time-series data, which can be based on
“pseudotime-series”of a developmental trajectory reconstructed from scRNA-seq data such as
those constructed using Monocle 2, live imaging data or datasets with current and predicted
spliced RNA expression estimated using RNA-velocity. Scribe provides two main types of
analysis:

1. Visualization and estimation of causal gene regulation;

2. Reconstruction of large-scale sparse causal regulatory networks.

Preparing pseudotime-series or RNA-velocity for scRNA-seq datasets
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Scribe does not provide any built-in functionalities for pseudotime-series construction and relies
on Monocle (http://cole-trapnell-lab.github.io/monocle-release/) or similar tools, such as
dpt(Haghverdi et al., 2016) or wishbone(Setty et al., 2016), for reconstructing the single-cell

970  trajectory before inferring causal networks. Scribe also doesn’t provide any built-in functionalities
for RNA-velocity estimation and relies on the velocyto framework (La Manno et al., 2017) for
those estimations. In relation to physical time, pseudotime has an arbitrary scale, thus Scribe
doesn't consider pseudotime value themselves instead using the ordering of each cell in
pseudotime for causal network inference. Similarly, we also assuming the time delays At used

975 in RNA-velocity estimations are constant across cell and genes for the sake of simplicity.

Visualizing pairwise gene interaction
In order to intuitively visualize casual regulations between genes, Scribe provides different
strategies to visualize the response, causality and combinatorial regulatory logic between
gene pairs. The response visualization is similar to the DREVI approach as proposed by Smita
980 Krishnaswamy, et. al(Krishnaswamy et al., 2014) with the exception that it considers time delay
to visualize the expected expression of potential targets given a potential regulator’s expression
after a time delay. Response visualization thus additionally aids in visualizing commonly
appeared time-delayed regulations involved in cell differentiation(Alon, 2007).

One limitation of response visualization is that it ignores the effects of a gene's previous state to

985  the current state or memory of its history. In order to also capture this effect and thus intuitively
visualize causality, Scribe is equipped with causality visualization. Essentially, this approach
visualizes the causal regulation by considering the information transfer from the time delayed
potential regulator to the target’s current expression, conditioned on the target’s previous state
to remove effects from auto-regulation. Causality visualization is a heatmap consisting of the

990  expected value of the target's current expression given the target’s immediate past expression
(y-axis) and regulator’s expression with a time lag 4 (x-axis). For each column, it represents the
relationship for the target's expression at the previous time point to the current state (memory of
the history or “auto-regulation”) given a fixed regulator value, while for each row, the information
transfer from the regulator to its targets given the previous target state.

995  Visualizing combinatorial gene regulation
It is of great interest to understand the combinatorial gene regulation as it often determines how
cells make decisions to choose a particular cell fate or adapt to external stimuli(Ma et al., 2009).
In order to visualize two-input combinatorial regulation, Scribe provides a third visualization tool.
This visualization is a heatmap consisting of the expected value of the target's current

1000  expression given knowledge of both of the regulators' expressions with a time lag (x/y-axis). For
both of the causality and the combinatorial logic visualizations, the corresponding expected
value is calculated through a local average with a Gaussian kernel.

We noticed that gene regulation directly affects the rate of the target gene which then results in
gene expression changes. For example, if a gene = is negatively regulated by gene v. We may
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1005 define the rate function of = as & = 1/(#71 +¥7-,.)  Therefore, visualizing the expected rate of

a target at its current state given knowledge of both the regulators' expression with a time lag
(x/y-axis) allows better intuition of regulations. Although we won’t have accurate estimates of the
rate of gene expression with pseudotime-series data, the RNA-velocity method can be used to
obtain those estimates.

1010  We also noted that combinatorial gene regulation visualization is especially useful to help us
visually identify potential direct/indirect regulators. For example, if we have a regulatory pathway
z—>y— >z we will see that the expected gene expression of - is only dependent on the direct
regulator ¥ instead of the indirect regulator = from the visualization (Figure 2D). That is,
combinatorial gene regulation visualization indeed provides visual intuitions for the conditional

1015 RDI (in the above case, the row corresponds to DZa,(z— > z|y(t — d2)) while the column
Dlg, (y— > z|z(t — d2))),

Causal network inference: an RDI-based algorithm

Causal inference in Scribe is based on RDI, which is an extension of directed information under

the assumption that the underlying processes can be described by a first order Markov model.
1020  The method we implemented basically tries to calculate the RDI value for each pair of genes

(4,J) conditioned over the top L genes (default is 0 or no conditioning and 1 for cases where we

used conditioning) which are candidates of being regulators of the gene J.

To reach this goal, it first calculates all the pairwise unconditioned RDI values, for all the
potential delays specified by the user in vector 4 (by default, it is a vector including 5, 10, 20,

1025  25). Note that for RNA-velocity dataset, since we assume the time delays At for the current and
predicted future RNA expression level are constant across the cell and genes, there is no need
to scan for a window of potential time delays. Then for each pair (i.7), it treats the delay
corresponding to the largest RDI value as the “true” delay of effect, i.e. the actual time delay by
which the effect of i appears in J. Having identified the “true” delays, the method then

1030  re-calculates the pairwise RDI values for each pair of genes (i), this time conditioned over the
top L (L can be specified by the user) genes with the highest incoming RDI values to J
associated with their corresponding true delays, treating them as the potential regulators of J.

The algorithm of causal inference in Scribe is as follows:

Input: gene expression time-series (either based on pseudotime-series, “RNA-velocity” or
living imaging data, among others) Xi for each gene i

Output: A matrix of pairwise causality scores

Parameters: 4: vector of delays, 7.: number of conditioning genes

Pseudocode:
1. For each pair of genes (i,J):
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- For all delays 6§ € d: Calculate ZD15(Xi — Xj)
- Set iy = argmaxscqRDIs(Xi — X;)

2. For each gene J:

- For all i: sort 1tPLsm(Xi = Xj) yajyes in descending order
- According to the sorting above, take the L +1 nodes : with the highest incoming RDI

. . . max . . max ,
values to J and store them in a set as ¢ . Store their corresponding delays 0™ in a set
dr_nax

J .

3. For each pair of genes (i:J):
Cr_nax

) 1 +.max i )
-[f 2 €MC remove i from M€ . Otherwise, remove the node with the lowest
RDIspex(Xi = Xj) from incj™

4. Output RDIgmex (Xi — XjH{Xu(t - 51rfljax)}leinc;'a’<)

The estimation of the mutual information is inspired by Kraskov’s method (Kraskov et al., 2004),
which builds on counting nearest-neighbor points. In the R implementation of Scribe,
nearest-neighbor points are identified with a modified RANN package.

To calculate the causal network with uRDI, we apply the same algorithm as above but simply

1055  replace RDI with uRDI. In addition to what required in RDI, uRDI also needs to estimate the
actual distribution, P(z:—d;%—1), which relies on kernel density estimation (KDE). We use
standard Gaussian kernels from R in the Scribe package to calculate KDE.

Inferring and visualizing transcriptomic gene regulatory network
Scribe can estimate a causal network from a set of known TFs (and among the TFs) to a set of
1060  targets of interest (selected through, for example the BEAM test) , or estimate the pairwise
causality among all the genes in a set of genes of interest. For the first scenario, Scribe
estimates causality between all pairs of TFs, and the causality from each TF to each putative
target; for the second scenario, Scribe estimates causality for any pair of genes in both
directions. In order to retrieve significant causal edges while removing promiscuous edges and
1065  reconstruct a sparse causal regulatory network that satisfies known properties of biology
networks, Scribe relies on a modified CLR method (Context Likelihood of Relatedness) and a
novel directed network regularization inspired by some biological assumptions (see section
Network sparsifier: CLR and directed graph regularization below).

In order to facilitate the visualization of complex networks, Scribe provides a variety of

1070  approaches to visualize the RDI network either through a heatmap, a hierarchical layout, an arc
diagram or a hive plot, implemented based on igraph, netbiov, ggraph, arcdiagram as well as
the HiveR R packages.
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We used the Kleinberg centrality to define the hubness used to order genes on the arc plot
which is defined as the the principal eigenvector of 4 *t(A), where 4 is the adjacency matrix of
the graph(Kleinberg, 1999).

In addition to the core causality detection feature based on (uniformalized) restricted direction
information, Scribe also supports various methods for inferring the regulatory relationships
including mutual information, Granger causality and CCM implemented based on parmigene,
vars and the rEDM packages, respectively. We also provide a python package for most of
estimation methods, although without extensive support for visualization which may be
supported in future.

Parameters of RDI

Parameter Type Effect of tuning parameters
d Vector of Default: 5, 20, 40
positive The vector of potential delays, for which the corresponding RDI
integers values are calculated.
Setting this argument too small may limit the ability of Scribe to
detect causal relationships, while setting it too large can result in
discovery of incorrect or indirect causal relationships, resulting in
false delays and conditioning.
L Non-negative | Default: 0
Integer Number of the top incoming node(s) to the target, excluding the
source, over which RDI is conditioned.
L=0 corresponds to no conditioning (Plain pair-wise RDI). Any L>0
corresponds to conditional RDI (cRDI).
Conditioning over more nodes approaches the theoretical
prerequisite of conditioning over all genes, excluding the source and
target, needed for inferring the true causal network, however it
imposes more computational burden and undesirably reduces the
accuracy of the RDI estimator with fixed number of samples N, as it
exponentially increases the dimension of the state space used to
calculate the k-nearest neighbors.
k Positive Default: 5
Integer Number of the nearest neighbors in kNN estimator for the
conditional mutual information. The parameter should be set in such
a way so the neighborhood captures adequate number of samples
for a good estimate of the probability corresponding to each sample.
Uniformization | Boolean Default: False
If True, uRDI instead of RDI will be used. While imposing higher
computational burden over the same data than RDI, uRDI is
expected to improve the causal inference in the cases with
highly-biased sampling distributions.
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Algorithm complexity

Algorithm Methodology Parameters Complexity
N: the number of samples;
d: the dimension of the
manifolds (default 2);
k: the number of nearest
neighbors
L: number of
I: the dimension of the
features data
CCM Determining the E: The number of lags | O(2Nd+2kN)+O(N)
causality from X to Y embedded in the
based on how well one | shadow manifold
can reconstruct the Tau: The time lag
cross-mapped estimate | between each
of X from the nearest consecutive pair of
neighbors determined time samples (default:
on Y space 1)
Granger Determining the Maxlag: The number | O(I"2 N + [*3 + "2 N + | N)
Causality causality from X to Y of lags of past sample
based on how much the | included in estimating
past samples of X the current state of Y
contribute in linearly
estimating the current
state of Y, compared to
when the Y is estimated
based merely upon its
own past
RDI and cRDI | Determining the k: The number of O(dN logN +kN) + O(N)
causality from X to Y neighbors for kNN
based on the amount of | estimation of mutual
mutual information information
between the past of X Delays: The lags for
and the current state of | which the mutual
Y conditoned over the information from the
past of (potentially) all lagged source to the
other variables than X current state of target
is estimated.
L: The number of the
conditioning nodes
other than X and Y
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uRDI and Same as RDI method, All Parameters from | O(dN logN +kN) + O(N”3) +
ucRDI but including the RDI plus: O(N)
replacement of the BW: The bandwidth

empirical distribution of | of the kernel estimator
the past samples with a
uniform distribution

Regularizing causal interaction networks

In theory, Scribe can remove potential indirect causal gene regulation from one gene = to
another gene ¥ by conditioning on all other genes in the transcriptome except =. However, this
requires huge amount of samples which is infeasible even with current single cell genomics
techniques and is impractically slow for even modest sets of genes. Therefore, we sought
alternative approaches based on statistical significance and reasonable assumptions of biology
structures to remove potential indirect edges. The first method we applied is the CLR or Context
Likelihood Relatedness. After computing the causality score with RDI (uRDI) without
conditioning between all gene-pairs, CLR calculates a normalized score based on the z-score
(or 0 if the z-score is less than 0) from all the input edges to the potential target and all the
output edges from the potential regulator of the gene pair. This normalized score is used as a
statistical likelihood of each causal edge regarding to its network context. More formally,
denoting the asymmetric matrix R corresponds to all raw causality scores calculated with
Scribe, with i being the causality score from gene i to gene J, we can calculate the z-score =z
based on all gene :’s output causality scores and % all gene J’s input causality scores. The

normalized score of Rij, Rij is defined as:

Rij = /(maz(0, )% + (maz(0, 2;))2/2
The user can either use the normalized score or choose a threshold of the normalized scores
and treat the edges above the threshold as significant or real regulation comparing to the
background distribution of the causality scores. As discussed in the original study, CLR removes
many of the false regulations in the network by eliminating “promiscuous” cases, where one
regulator weakly co-varies with a large numbers of genes, or one gene weakly co-varies with
many transcription factors which may arise when the assayed conditions are inadequately or
unevenly sampled. We note that, however, the original CLR is only applied on a symmetric
mutual information based matrix while we are dealing with an asymmetric matrix of causality
scores. After applying CLR, the network may be still dense and contain spurious edges.
Previous studies have shown that the biological networks have some special properties distinct
from those of random networks; for example, the network’s out-degree distribution is well
approximated by a power law distribution where its in-degree distribution is almost an
exponential distribution. Based on those assumptions, we proposed a new regularization
method for a directed graph.

The goal of our method is to learn a sparse directed graph from a dense asymmetric causality
network (retrieved after applying CLR) satisfying two aforementioned properties. The directed

40


http://dx.doi.org/10.1101/426981
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Sep. 25, 2018; doi: http://dx.doi.org/10.1101/426981. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

graph’s structure is represented by an indicator matrix denoted by © € {0, 1}"*" ‘\where i =1

stands for the existence of edge i to J, and o otherwise . Since the entries are indicators, the

in-degree and out-degree of each node in the network can be easily formulated. Specifically, the

out-degree of the ith node can be represented by "out(i) = [|0i]|1 and the in-degree of the ith
1250 gene is correspondingly represented by (i) = [[0%|l1, where ¢; and ¢ are the ith row and ith

column of ©, and /1 counts the number of nonzero elements since %.; € {0,1}. Given the

asymmetric matrix of causality score R with the (i.J)th entry as Rij, the following optimization

problem is formulated to learn the structure of the network:

minee — X ; 01 Rig + a oLy log(|16il 1 +€) + AL 11671
where the feasible set of the network structure is

A={0e€{0,1}"N:3"N"6,; > B}

1255  The intuition of the objective function comes directly from the above three assumptions: the first
term of the objective is to select the edge with large value of Fij; the second term is the
negative log likelihood of the power law distribution for the out-degree of each gene; the last
term is the negative log likelihood of the exponential distribution for the in-degree of each gene.
The budget parameter B is introduced to prevent trivial solution, and a small positive value ¢ is

1260  used to prevent the numerical issue of log function. The parameter « is the exponent of the
power law distribution and X is the parameter of the exponential distribution.

Benchmarking Scribe with alternative algorithms on inferring causal regulatory
network

We follow the same procedure as reported previously (Qiu et al., 2012) to simulate the

1265  differentiation of central nervous system (Eq. 1), except here we replace the correlated noise in
the previous study with independent additive noise for the purpose of simplicity. The data
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generated through this simulation is regarded as “real-time” dataset.

maturey, =0

n=4
k=1
a=4
eta = 0.25
etay, = 0.125
etap = 0.1
as = 2.2
ae = 6
mx =10
dz[Pax6] 1
— T = s — k- x4 1[Paz6
dt T etan (e [Turl] - et [AL L] + o7 [Olig2]) - ey Maturq] — © ot
dz[Mashl] a1 [Pax6]
—a- — k- we_i[Mashl
dt O T2 [Pant] + o [Hesy ¢ emtMashl]
dz[Brn2) xf [Mashl]
# % Txap [Mashy) FeeilBrmd]
dz|Zicl] zp [Mashl] ]
—a- — k- [Zicl
dt T ashy] e iel]
de[Tujl] xp ¢ [Brn2] + 2} {[Zicl] + z}_{[MytlL] .
= g - — k- zq[Tujl]
dt 14 ap  [Bra2] +ap ([ Zicl] + o [MytlL]
dz[Hesb] a1 [Paxb]

—a- — k- zeq[Hess
dt g [Past] + o Masht] T esd]

dx[S¢l] eta” - x| [Hesb)
= a¢ - — k- we_q[Sel
G T etan a  [Hesh| £ mfoligze " oSl

dx[Olig2] eta - 2} [Hes5])) ]
dt — e (14 (27 ,[Scl]) + (eta - a7 [Hes5] k- @e-1[Olig?]
dx[Stat3] eta™ - x| [Hesb] - 2] {[S¢l]
=a- — k- q[Statd
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Eq. 1. Ordinary differential equations for the neuron system.

For creating Fig 1D, we set the time step as 0.1, samples per simulation as 100, the total

number of simulations as 20. We then infer the causal network based on all the 2000 samples

using CCM, GC and RDI or uRDI either without conditioning or conditioning on one gene that

has the maximal input causality other than the current regulator to the target. Time delay
between regulator and target used in all those algorithms is set to be 1. We compare the
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inferred network with the known network to calculate the AUC (area under curve). The

1275  experiment is repeated for 25 times to ensure reliable conclusions. We also increase the
standard deviation of the intrinsic noise from 0 to 0.2. ROC (Receiver Operating Characteristic)
curve in Fig 1C is obtained similarly while setting the simulation based on a linear system where
the transition matrix A is generated according to the network with non-zero coefficients
randomly taken from a uniform distribution ©(0.75,1.25) The A matrix is then normalized to

1280  max(eigen(A)) * 1.01 to avoid the divergence of the system. The intrinsic noise standard
deviation (s.d) is set to be equal to 0.01. All the genes are initialized with a random value
u(0.5,2)  To infer the causal network, we take 100 samples per simulation and perform the
simulation five times, then apply Scribe, CCM and GC on those simulated data points.

To visualize the response, causality and combinatorial regulations as in Fig 2, Supplementary

1285  Figure 2, a single simulation leading to the neuron fate is used. To create the response and the
causality visualization for the two-node motifs (Ma et al., 2009), the network motifs are firstly
converted into a set of SDE functions using similar formulations as that used in the above
simulation for neuronal differentiation. The expression dynamics is then simulated by setting the
initial expression for both genes as 0.01 and followed based on the set of SDE equations (Fig

1290  3a). We used similar procedures to simulate expression of genes under combinatorial
regulations with different logic gates and then create the combinatorial regulation visualizations
(Fig 2b).

To investigate the importance of temporal coupling and the number of samples on the
performance of causal inference, we also simulate three other types of dataset based on the
1295  simulated “real time” dataset as following:
1. The RNA-velocity analysis framework estimates both exon and intron expression levels

for each cell i or Ci. It then calculates the RNA-velocity for each gene (7) V(j) in each
cell 7 and predicts the future exon expression of EPredict gfter At = 1. Assuming the time
delays from all regulators to their putative targets are the same as A+ (or 1), Scribe

1300 calculates causality from the potential regulator to the target with the conditional mutual
information between the current regulator’s exon expression z: to the predicted target

exon expression v:+1 (or equivalently the estimated RNA velocity value Vt(y))

conditioned on the current target exon expression ¥: or by the default formula

I(zs; ye+1lye) (or alternatively (2t Vi(y)|ye)). Since @t ¥e+1(Vi(¥)), %t are all estimated
1305 from the same cell, in theory the gene expression dynamics between =, yt+1, ¢ is

coupled. To generate RNA-velocity simulation dataset, we randomly select one time

point ¢ for each cell and collect all genes’ current and the next time point’s expression (

zi(t) and =it + 1)). RNA velocity for each cell in that time point is then simply calculated

as the difference between next time point and current time point’s gene expression (
1310 Vi(y) = @i(t + 1) — 24(t)),

2. To generate live-imaging simulation dataset, we first randomly select 13 cells where for
each cell, a different gene is chosen and is followed over the entire developmental
process.
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3. To generate pseudotime dataset, similar to RNA-velocity, we randomly select one time
1315 point ¢ for each cell and collect all genes’ expression at that time point. Then all data
points from each cell at different time point is pooled and used as input to Monocle 2 for
trajectory inference, we then set the beginning of the simulation as root state for the
trajectory and order cells based on the inferred pseudotime to form a pseudotime series.
To create Fig 6B or Supplementary Figure 6A, five replicates each with 2000 data points are
1320  used for each algorithm. For Fig 6C and Supplementary Figure 6B, the same analysis is
performed but with data downsampled to 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800 or
2000 data points.

Details on analyzing datasets used in this study

Inferring causal network with pseudotime ordered scRNA-seq datasets. Lung data is

1325  processed as described previously (Qiu et al., 2017a). Categorization of pneumocyte
specification markers into either early and late groups used for benchmarking is based on
references(Qiu et al., 2017a; Treutlein et al., 2014).

The LPS data was pre-processed as described previously (Qiu et al., 2017b) while the trajectory
is reconstructed with the reversed graph embedding (Qiu et al., 2017a) on the same set of

1330  ordering genes used in this study. Only the path with wild-type cells is used for causal network
inference. Regulators and targets, and the regulatory network used for benchmarking are
collected from references (Amit et al., 2009) and reference (Garber et al., 2012), respectively.

Olsson data is processed as described previously. The master regulators, transcription factors
and downstream targets, and the regulatory network used for benchmarking are collected from
1335  reference (Qiu et al., 2017a) and references (Su et al., 2017), respectively.

Paul data is processed as described previously. Only the path leading to the erythrocytic fate is
used for reconstructing the causal regulatory network. The regulatory network responsible for
the differentiation of erythrocyte cells used for benchmarking is collected from (Swiers et al.,
2006).

1340  Infer causal network with RNA-velocity. The data of the chromaffin cell “RNA-velocity”
analysis is retrieved from
(http://pklab.med.harvard.edu/velocyto/notebooks/R/chromaffin.nb.html). We use the estimated
exon expression to reconstruct the trajectory for the chromaffin cell commitment. Only cells on
the path from the Schwann cell progenitors to mature chromaffin cells are used to infer the

1345 casual network. Two different formulations, (2« ye+1lye) (or (@t Vt(y)\yt)), can be used to infer
causal networks with data from RNA-velocity. In this study, we apply the first formulation.

Inferring causal network with live-image data. Lineage-resolved live-imaging data for C.
elegans early embryogenesis is obtained from Waterston lab. Raw fluorescence intensity signal
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is directly used for causal network inference. We note two caveats in analyzing the reporter
data with Scribe. First, although the promoter-fusion data sheds light on the induction kinetics of
the TF of interest, once the fluorescent reporter is expressed it follows the trafficking and
degradation kinetics of the histone protein, and not the TF. Second, the time series for each TF
was captured in a different embryo, so this may introduce noise that obscures the
regulator/target relationships between the TFs although the C. elegans development process is
highly robust. Nevertheless, this data set represents an unprecedented view of TF activity at
high spatiotemporal resolution during the early development of a complex organism.
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